• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 1
  • Tagged with
  • 23
  • 12
  • 12
  • 12
  • 9
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Análise molecular do gene PAH em pacientes com fenilcetonúria e uma abordagem estrutural da enzima fenilalanina hidroxilase

Ceolato, Juliana Casagrande January 2011 (has links)
A fenilcetonúria (PKU) é o erro inato do metabolismo dos aminoácidos mais comum e caracteriza-se por elevadas concentrações de L-fenilalanina no sangue devido a deficiência da enzima fenilalanina hidroxilase (PAH). A PAH é composta por monômeros divididos em três domínios: de regulação, catalítico e de tetramerização. Os objetivos do presente trabalho foram identificar as mutações no gene PAH responsáveis por PKU em pacientes do sul do Brasil e analisar o comportamento da PAH nas formas de monômero, dímero e tetrâmero. A amostra foi composta por 44 pacientes não aparentados. As mutações comuns foram analisadas por PCR em tempo real (sistema TaqMan®) e através de análise por RFLP. Os pacientes que, após a triagem para as mutações comuns, não tiveram seu alelos mutantes definidos, foram submetidos ao sequenciamento direto do gene PAH. Um modelo do monômero da PAH foi construído através do programa Modeller 9v7 para as análises in silico. A montagem do dímero e do tetrâmero da enzima foi realizada no programa PyMOL 1.1 e a simulação de DM coarse-grained pelo pacote de programas GROMACS 4.0. A aplicação conjunta das técnicas para identificação de mutações no gene PAH permitiu a definição de 83 alelos mutantes (94,3%) do total de 88 alelos estudados e a identificação do genótipo de 40 (90,9%) dos 44 pacientes incluídos neste trabalho. Os resultados obtidos contribuem com o perfil de mutações na população do sul do Brasil e indicam que o mesmo é representado por poucas mutações frequentes e um número maior de mutações raras. O perfil da trajetória dos monômeros durante a simulação nas estruturas propostas é diferente, principalmente pelo comportamento das α-hélices envolvidas na oligomerização da proteína. A α-hélice no monômero sofre compactação ao núcleo da proteína. A α-hélice no dímero apresenta alta flexibilidade mostrando que apenas duas α- hélices coordenadas não parecem suficientes para imobilizar este sistema e torná-lo rígido e estável, o que é observado na simulação da estrutura tetramérica quando quatro α-hélices estão coordenadas. Assim, mutações que impeçam a oligomerização da proteína podem formar estruturas mais instáveis que, como observado no monômero livre, podem iniciar um processo de agregação e serem enviadas a degradação rápida ou, somente por não atingirem conformação adequada, sejam encaminhadas a esta rota. Ambos aspectos abordados nesse trabalho contribuem para o melhor conhecimento do metabolismo normal e das alterações hereditárias relacionadas a fenilalanina hidroxilase. / Phenylketonuria (PKU), the most common inborn error of amino acids metabolism, is characterized by high levels of L-phenylalanine in blood due to deficiency of the enzyme phenylalanine hydroxylase (PAH). The PAH consists of monomers divided into three domains: regulatory, catalytic, and tetramerization. The aims of this study were to identify mutations in the PAH gene responsible for PKU in patients from South Brazil and to analyze the behavior of PAH as monomer, dimer, and tetramer. The sample for in vitro analyzes was composed by 44 unrelated patients. Common mutations were analyzed by qualitative Real time PCR (TaqMan® system) and by RFLP analysis. Patients with undefined mutant alleles after the screening for common mutations were submitted to direct DNA sequencing of the PAH gene. For in silico analyses a model of the PAH monomer was built through Modeller 9v7 program. The assembly of PAH dimer and tetramer was performed by PyMOL 1.1 program and the simulation of MD coarse-grained by package GROMACS 4.0. The combined approach for identifying mutations in the PAH gene identified of 83 mutant alleles (94.3%) of a total of 88 alleles and genotypes were defined in 40 (90.9%) of the 44 patients included in this work. Results show mutation profile where few mutations were present in the majority of mutant alleles while the remaining ones were rare sequence alterations. Considering in silico analyses, monomers trajectory profile of the monomers during the simulation in the proposed structures was different mainly by the behavior of α-helices involved in protein oligomerization. The α- helix in the monomer undergoes compression toward the protein core. The dimer α-helix presents high flexibility showing that only two α-helices coordinated do not seem to be sufficient to immobilize this system and make it rigid and stable, which is observed in simulation of the tetrameric structure when four α-helices are coordinated. Thus, mutations that prevent protein oligomerization can form these unstable structures in a higher level and they may initiate an aggregation process and be rapidly degraded or be conducted to this route by failing to achieve proper conformation. Both aspects addressed in this work contribute for a wider knowledge of normal metabolism and inherited alterations related to phenylalanine hydroxylase.
2

Análise molecular do gene PAH em pacientes com fenilcetonúria e uma abordagem estrutural da enzima fenilalanina hidroxilase

Ceolato, Juliana Casagrande January 2011 (has links)
A fenilcetonúria (PKU) é o erro inato do metabolismo dos aminoácidos mais comum e caracteriza-se por elevadas concentrações de L-fenilalanina no sangue devido a deficiência da enzima fenilalanina hidroxilase (PAH). A PAH é composta por monômeros divididos em três domínios: de regulação, catalítico e de tetramerização. Os objetivos do presente trabalho foram identificar as mutações no gene PAH responsáveis por PKU em pacientes do sul do Brasil e analisar o comportamento da PAH nas formas de monômero, dímero e tetrâmero. A amostra foi composta por 44 pacientes não aparentados. As mutações comuns foram analisadas por PCR em tempo real (sistema TaqMan®) e através de análise por RFLP. Os pacientes que, após a triagem para as mutações comuns, não tiveram seu alelos mutantes definidos, foram submetidos ao sequenciamento direto do gene PAH. Um modelo do monômero da PAH foi construído através do programa Modeller 9v7 para as análises in silico. A montagem do dímero e do tetrâmero da enzima foi realizada no programa PyMOL 1.1 e a simulação de DM coarse-grained pelo pacote de programas GROMACS 4.0. A aplicação conjunta das técnicas para identificação de mutações no gene PAH permitiu a definição de 83 alelos mutantes (94,3%) do total de 88 alelos estudados e a identificação do genótipo de 40 (90,9%) dos 44 pacientes incluídos neste trabalho. Os resultados obtidos contribuem com o perfil de mutações na população do sul do Brasil e indicam que o mesmo é representado por poucas mutações frequentes e um número maior de mutações raras. O perfil da trajetória dos monômeros durante a simulação nas estruturas propostas é diferente, principalmente pelo comportamento das α-hélices envolvidas na oligomerização da proteína. A α-hélice no monômero sofre compactação ao núcleo da proteína. A α-hélice no dímero apresenta alta flexibilidade mostrando que apenas duas α- hélices coordenadas não parecem suficientes para imobilizar este sistema e torná-lo rígido e estável, o que é observado na simulação da estrutura tetramérica quando quatro α-hélices estão coordenadas. Assim, mutações que impeçam a oligomerização da proteína podem formar estruturas mais instáveis que, como observado no monômero livre, podem iniciar um processo de agregação e serem enviadas a degradação rápida ou, somente por não atingirem conformação adequada, sejam encaminhadas a esta rota. Ambos aspectos abordados nesse trabalho contribuem para o melhor conhecimento do metabolismo normal e das alterações hereditárias relacionadas a fenilalanina hidroxilase. / Phenylketonuria (PKU), the most common inborn error of amino acids metabolism, is characterized by high levels of L-phenylalanine in blood due to deficiency of the enzyme phenylalanine hydroxylase (PAH). The PAH consists of monomers divided into three domains: regulatory, catalytic, and tetramerization. The aims of this study were to identify mutations in the PAH gene responsible for PKU in patients from South Brazil and to analyze the behavior of PAH as monomer, dimer, and tetramer. The sample for in vitro analyzes was composed by 44 unrelated patients. Common mutations were analyzed by qualitative Real time PCR (TaqMan® system) and by RFLP analysis. Patients with undefined mutant alleles after the screening for common mutations were submitted to direct DNA sequencing of the PAH gene. For in silico analyses a model of the PAH monomer was built through Modeller 9v7 program. The assembly of PAH dimer and tetramer was performed by PyMOL 1.1 program and the simulation of MD coarse-grained by package GROMACS 4.0. The combined approach for identifying mutations in the PAH gene identified of 83 mutant alleles (94.3%) of a total of 88 alleles and genotypes were defined in 40 (90.9%) of the 44 patients included in this work. Results show mutation profile where few mutations were present in the majority of mutant alleles while the remaining ones were rare sequence alterations. Considering in silico analyses, monomers trajectory profile of the monomers during the simulation in the proposed structures was different mainly by the behavior of α-helices involved in protein oligomerization. The α- helix in the monomer undergoes compression toward the protein core. The dimer α-helix presents high flexibility showing that only two α-helices coordinated do not seem to be sufficient to immobilize this system and make it rigid and stable, which is observed in simulation of the tetrameric structure when four α-helices are coordinated. Thus, mutations that prevent protein oligomerization can form these unstable structures in a higher level and they may initiate an aggregation process and be rapidly degraded or be conducted to this route by failing to achieve proper conformation. Both aspects addressed in this work contribute for a wider knowledge of normal metabolism and inherited alterations related to phenylalanine hydroxylase.
3

Análise molecular do gene PAH em pacientes com fenilcetonúria e uma abordagem estrutural da enzima fenilalanina hidroxilase

Ceolato, Juliana Casagrande January 2011 (has links)
A fenilcetonúria (PKU) é o erro inato do metabolismo dos aminoácidos mais comum e caracteriza-se por elevadas concentrações de L-fenilalanina no sangue devido a deficiência da enzima fenilalanina hidroxilase (PAH). A PAH é composta por monômeros divididos em três domínios: de regulação, catalítico e de tetramerização. Os objetivos do presente trabalho foram identificar as mutações no gene PAH responsáveis por PKU em pacientes do sul do Brasil e analisar o comportamento da PAH nas formas de monômero, dímero e tetrâmero. A amostra foi composta por 44 pacientes não aparentados. As mutações comuns foram analisadas por PCR em tempo real (sistema TaqMan®) e através de análise por RFLP. Os pacientes que, após a triagem para as mutações comuns, não tiveram seu alelos mutantes definidos, foram submetidos ao sequenciamento direto do gene PAH. Um modelo do monômero da PAH foi construído através do programa Modeller 9v7 para as análises in silico. A montagem do dímero e do tetrâmero da enzima foi realizada no programa PyMOL 1.1 e a simulação de DM coarse-grained pelo pacote de programas GROMACS 4.0. A aplicação conjunta das técnicas para identificação de mutações no gene PAH permitiu a definição de 83 alelos mutantes (94,3%) do total de 88 alelos estudados e a identificação do genótipo de 40 (90,9%) dos 44 pacientes incluídos neste trabalho. Os resultados obtidos contribuem com o perfil de mutações na população do sul do Brasil e indicam que o mesmo é representado por poucas mutações frequentes e um número maior de mutações raras. O perfil da trajetória dos monômeros durante a simulação nas estruturas propostas é diferente, principalmente pelo comportamento das α-hélices envolvidas na oligomerização da proteína. A α-hélice no monômero sofre compactação ao núcleo da proteína. A α-hélice no dímero apresenta alta flexibilidade mostrando que apenas duas α- hélices coordenadas não parecem suficientes para imobilizar este sistema e torná-lo rígido e estável, o que é observado na simulação da estrutura tetramérica quando quatro α-hélices estão coordenadas. Assim, mutações que impeçam a oligomerização da proteína podem formar estruturas mais instáveis que, como observado no monômero livre, podem iniciar um processo de agregação e serem enviadas a degradação rápida ou, somente por não atingirem conformação adequada, sejam encaminhadas a esta rota. Ambos aspectos abordados nesse trabalho contribuem para o melhor conhecimento do metabolismo normal e das alterações hereditárias relacionadas a fenilalanina hidroxilase. / Phenylketonuria (PKU), the most common inborn error of amino acids metabolism, is characterized by high levels of L-phenylalanine in blood due to deficiency of the enzyme phenylalanine hydroxylase (PAH). The PAH consists of monomers divided into three domains: regulatory, catalytic, and tetramerization. The aims of this study were to identify mutations in the PAH gene responsible for PKU in patients from South Brazil and to analyze the behavior of PAH as monomer, dimer, and tetramer. The sample for in vitro analyzes was composed by 44 unrelated patients. Common mutations were analyzed by qualitative Real time PCR (TaqMan® system) and by RFLP analysis. Patients with undefined mutant alleles after the screening for common mutations were submitted to direct DNA sequencing of the PAH gene. For in silico analyses a model of the PAH monomer was built through Modeller 9v7 program. The assembly of PAH dimer and tetramer was performed by PyMOL 1.1 program and the simulation of MD coarse-grained by package GROMACS 4.0. The combined approach for identifying mutations in the PAH gene identified of 83 mutant alleles (94.3%) of a total of 88 alleles and genotypes were defined in 40 (90.9%) of the 44 patients included in this work. Results show mutation profile where few mutations were present in the majority of mutant alleles while the remaining ones were rare sequence alterations. Considering in silico analyses, monomers trajectory profile of the monomers during the simulation in the proposed structures was different mainly by the behavior of α-helices involved in protein oligomerization. The α- helix in the monomer undergoes compression toward the protein core. The dimer α-helix presents high flexibility showing that only two α-helices coordinated do not seem to be sufficient to immobilize this system and make it rigid and stable, which is observed in simulation of the tetrameric structure when four α-helices are coordinated. Thus, mutations that prevent protein oligomerization can form these unstable structures in a higher level and they may initiate an aggregation process and be rapidly degraded or be conducted to this route by failing to achieve proper conformation. Both aspects addressed in this work contribute for a wider knowledge of normal metabolism and inherited alterations related to phenylalanine hydroxylase.
4

Desenvolvimento, otimização e validação de método rápido para análise simultânea de fenilalanina, triptofano, histidina e tirosina em cereais por cromatografia eletrocinética micelar

Valese, Andressa Camargo January 2012 (has links)
Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro de Ciências Agrárias. Programa de Pós-Graduação em Ciência dos Alimentos. / Made available in DSpace on 2013-03-04T19:55:40Z (GMT). No. of bitstreams: 1 313765.pdf: 1771555 bytes, checksum: 6b55eb2cdf2a36d8a465fb77ce92d5ae (MD5) / Os cereais são uma fonte importante de proteína para o homem, sendo primordial em uma alimentação saudável e por este motivo a ANVISA,de acordo com Resolução (RDC 19/2010 passa a exigir das empresas fabricantes de alimentos, que forneçam a quantidade de fenilalanina, proteína e umidade de alimentos. Neste trabalho foi desenvolvido um método rápido para análise simultânea de fenilalanina (Phe), triptofano (Trp), histidina (His) e tirosina (Tyr) em amostras de cereais utilizando cromatografia eletrocinética micelar. O capítulo 2 versa sobre a otimização da composição do eletrólito de corrida e avaliação dos demais parâmetros instrumentais inerentes à técnica para determinação dos aminoácidos aromáticos, fazendo o uso de planejamentos fatoriais fracionário e completo. O eletrólito de corrida otimizado consistiu de 30 mmol L-1 de H3PO4; 100 mmol L-1 de SDS e 25% (v/v) de MeOH, com tempo de análise inferior a 2,5 minutos para a separação dos quatro aminoácidos. O terceiro capítulo se refere a validação intralaboratorial utilizando o protocolo de validação EURACHEM. As curvas de calibração indicaram bom ajuste ao modelo linear, com níveis de concentração de 2,5-17,5; 10,1-40,4; 10,8-43,2 e 2,65-18,55 mg L-1 para o Trp, Phe, His e Tyr, respectivamente. Foi verificado efeito de matriz para Tyr, e os limites de deteção encontrados foram de 0,5; 1,0; 2,5 e 0,25 mg L-1, enquanto que e os limites de quantificação foram de 1,75; 3,0; 7,0 e 1,0 mg L-1 para o Trp, Phe, His e Tyr, respectivamente. Os resultados de recuperação encontrados variaram de 80-110% para a Phe, Hist e Tyr o desvio padrão relativo (RSD) (%) para a precisão inter e intra-ensaio foram inferiores a 6,8% e 0,6% para a razão área do pico/padrão interno e tempo de migração, para todos os analitos em estudo. O método validado foi aplicado com sucesso em amostras comerciais de cereais sinalizando positivamente o uso da eletroforese capilar como técnica analítica confiável para determinação destes aminoácidos.
5

Efeito da fenilalanina e da alanina sobre as atividades dos complexos da cadeia respiratória de córtex cerebral de ratos

Rech, Virgínia Cielo January 2002 (has links)
A fenilcetonúria (PKU) é caracterizada bioquimicamente pelo acúmulo de fenilalanina (Phe) e seus metabólitos nos tecidos dos pacientes afetados. O dano neurológico é a marca da PKU e a Phe é considerada o principal agente neurotóxico nesta doença, cujos mecanismos de neurotoxicidade são pouco conhecidos. A alanina (Ala) é nutricionalmente um aminoácido não essencial. Ela é o principal aminoácido gliconeogênico porque pode originar piruvato e glicose, tendo sido, por este motivo, usada como um suplemento dietético em combinação com o hormônio de crescimento no tratamento de crianças subnutridas afetadas por algumas doenças metabólicas herdadas, para induzir o anabolismo. O principal objetivo do presente trabalho foi medir as atividades dos complexos da cadeia respiratória mitocondrial (CCR) e succinato desidrogenase (SDH) no córtex cerebral de ratos Wistar sujeitos à hiperfenilalaninemia (HPA) quimicamente induzida e à administração crônica de Ala, desde o 6± até o 21± dia de vida pós-natal. Também investigamos o efeito in vitro da Phe e Ala nas atividades da SDH e CCR em córtex cerebral de ratos de 22 dias de idade. Os resultados mostraram uma redução nas atividades da SDH e complexos I + III no córtex cerebral de ratos sujeitos à HPA e também no córtex cerebral de ratos sujeitos à administração de Ala. Também verificamos que ambos: Phe e Ala inibiram in vitro a atividade dos complexos I + III por competição com NADH. Considerando a importância da SDH e CCR para a sustentação do suprimento energético para o cérebro, nossos resultados sugerem que o déficit energético possa contribuir para a neurotoxicidade da Phe em PKU. Em relação à Ala, ficou evidenciado que mais investigações serão necessárias antes de considerar a suplementação com Ala como uma terapia adjuvante válida para crianças com estas doenças.
6

Papel do estresse oxidativo na fisiopatologia da fenilcetonúria

Sitta, Angela January 2011 (has links)
A fenilcetonúria é um erro inato do metabolismo de aminoácidos, causada pela deficiência severa ou ausência na atividade da fenilalanina hidroxilase, enzima que catalisa a hidroxilação da fenilalanina em tirosina na presença do cofator tetra-hidrobiopterina. Como consequência, ocorre o acúmulo da fenilalanina e seus metabólitos nos tecidos e nos líquidos biológicos dos pacientes afetados. O tratamento para a fenilcetonúria consiste em uma dieta restrita em fenilalanina e proteínas, suplementada com uma fórmula especial, contendo aminoácidos (exceto a fenilalanina) e micronutrientes. A principal característica clínica dos pacientes fenilcetonúricos não tratados é o retardo mental e outras alterações neurológicas, cuja base bioquímica é ainda pouco compreendida. Entretanto, nos últimos anos evidências indicam que o estresse oxidativo está envolvido na fisiopatologia da doença. Em estudos prévios, demonstramos que pacientes fenilcetonúricos diagnosticados tardiamente apresentavam aumento na peroxidação lipídica e redução de antioxidantes no momento do diagnóstico e também durante o tratamento, e que esses parâmetros não estavam diretamente relacionados com os níveis sanguíneos de fenilalanina. O objetivo deste trabalho foi o de investigar o papel do dano oxidativo e também das defesas antioxidantes na patogênese da fenilcetonúria. Foi demonstrado que pacientes fenilcetonúricos tratados apresentaram maior dano ao DNA, medido através do ensaio cometa, em comparação aos controles, e que este dano estava relacionado aos níveis sanguíneos elevados de fenilalanina. Neste particular, testes in vitro revelaram um efeito dose-dependente da fenilalanina sobre o dano ao DNA, reforçando os achados in vivo e indicando que a fenilalanina foi responsável por esse dano. Também verificamos que os pacientes fenilcetonúricos com diagnóstico tardio apresentaram maior oxidação a lipídios (determinado através da técnica das espécies reativas ao ácido tiobarbitúrico) e a proteínas (medido através do conteúdo de sulfidrilas e carbonilas) em comparação aos pacientes diagnosticados no período neonatal e aos controles. Portanto, o diagnóstico precoce, além de prevenir o retardo mental, como já descrito na literatura científica, também previne o dano oxidativo a biomoléculas. Por outro lado, foi observada uma redução nas concentrações de antioxidantes não enzimáticos (níveis de glutationa e reatividade antioxidante total) e na atividade da enzima antioxidante glutationa peroxidase em ambos os grupos de pacientes. A diminuição nos antioxidantes é comum em pacientes fenilcetonúricos, sendo atribuída principalmente à dieta restrita. Neste trabalho também verificamos que os pacientes que aderiam estritamente à dieta recomendada apresentavam redução nos níveis sanguíneos de L-carnitina, um composto com ação antioxidante. Além disso, os níveis de L-carnitina nesses pacientes mostraram uma correlação negativa significativa com a lipoperoxidação (medida pelas espécies reativas ao ácido tiobarbitúrico) e uma correlação positiva significativa com a reatividade antioxidante total. Os dados sugerem que a deficiência em L-carnitina está relacionada com o estresse oxidativo em pacientes fenilcetonúricos e, portanto, sua suplementação deva ser considerada como uma terapia adjuvante. De fato, a suplementação com L-carnitina e selênio (outro composto antioxidante deficiente em pacientes fenilcetonúricos) foi capaz de corrigir a oxidação a lipídios e proteínas (medida pelas espécies reativas ao ácido tiobarbitúrico e pelo conteúdo de sulfidrilas, respectivamente), além de normalizar a atividade da enzima glutationa peroxidase. Adicionalmente, foi verificada uma correlação negativa significativa entre a peroxidação lipídica e os níveis sanguíneos de Lcarnitina, assim como uma correlação positiva significativa entre a atividade da glutationa peroxidase e a concentração sanguínea de selênio. Em conjunto, nossos resultados sugerem que o estresse oxidativo está envolvido na patogênese da fenilcetonúria. Considerando que nossos resultados possam ser extrapolados para o cérebro, que possui menos defesas antioxidantes e vários fatores que aumentam a produção de radicais livres, pode ser proposto que o dano oxidativo contribui, pelo menos em parte, com a disfunção neurológica na fenilcetonúria, e, portanto, que a administração dos antioxidantes deficientes nesta patologia deva ser considerada na terapia da doença. / Phenylketonuria is an inborn error of amino acid metabolism, caused by severe deficiency or absence of phenylalanine hydroxylase activity, enzyme that catalyzes the hydroxylation of phenylalanine to tyrosine in the presence of the cofactor tetrahydrobiopterin. As consequence, the accumulation of phenylalanine and its metabolites in tissues and biologic fluids of affected patients occurs. The treatment for phenylketonuria consists in a phenylalanine and protein-restricted diet, supplemented with a special formula containing amino acids (except phenylalanine) and micronutrients. The main clinical characterization of untreated phenylketonuric patients is mental retardation and other neurological features, whose biochemical basis is poorly understood. However, in recent years evidences indicate that oxidative stress is involved in the pathophysiology of the disease. In previous studies it was demonstrated that phenylketonuric patients late diagnosed presented increased lipid peroxidation and reduced antioxidants at the moment of diagnosis and also during the treatment, and that these parameters were not directly related to the phenylalanine blood levels. The objective of this work was to investigate the role of the oxidative damage and of antioxidant defenses on pathogenesis of phenylketonuria. It was demonstrated that phenylketonuric patients under treatment presented increased DNA damage, measured by the comet assay, compared to controls, which was related to phenylalanine blood levels. In this particular, in vitro tests revealed a dose-dependent effect of phenylalanine on DNA damage, reinforcing in vivo findings indicating that the phenylalanine was responsible for this damage. We also verified that phenylketonuric patients late diagnosed presented increased lipid (determined by thiobarbituric acid-reactive species) and protein oxidation (measured by sulphydryl and carbonyl groups) when compared to patients diagnosed in the neonatal period and to controls. Therefore, early diagnosis besides to prevent mental retardation, as described in the scientific literature, also prevents oxidative damage to biomolecules. On the other hand, it was observed a reduction in the concentration of non-enzymatic antioxidants (glutathione levels and total antioxidant reactivity) as well as in the activity of glutathione peroxidase enzyme in both groups of patients. The reduction in antioxidants is common in phenylketonuric patients being mainly attributed to the restricted diet. In this work, we also verified that patients who strictly adhered to the recommended diet present reduction in blood L-carnitine levels, a compound with an antioxidant action. Also, the levels of L-carnitine in these patients showed a significant negative correlation with lipid peroxidation (measured by thiobarbituric acid-reactive species) and a significant positive correlation with the total antioxidant reactivity. This suggests that L-carnitine deficiency is related to oxidative stress in phenylketonuric patients and therefore the supplementation should be considered as an adjuvant therapy. In fact, the supplementation with L-carnitine and selenium (other antioxidant compound deficient in phenylketonuric patients) was capable to correct the lipid and protein oxidation (measured by thiobarbituric acid-reactive species and sulphydryl content, respectively) besides to normalize the glutathione peroxidase activity. In addiction, it was verified a significant inverse correlation between lipid peroxidation and L-carnitine blood levels as well as a significant positive correlation between glutathione peroxidase activity and blood selenium concentration. Taken these results together, our results suggest that oxidative stress is involved in the pathogenesis of phenylketonuria. Considering that our results may be extrapolated to the brain, which has less antioxidant defenses and several other factors that increase the production of free radicals, it may be propose that the oxidative damage contributes, at least in part, to the neurological dysfunction in phenylketonuria and, therefore, the administration of deficient antioxidants in this pathology should be considered in the therapy of the disease.
7

Efeito in vitro dos ácidos fenilpirúvico, feniláctico e fenilacético sobre parâmetros de estresse oxidativo em cérebro de ratos jovens

Sgarbi, Mirian Bonaldi January 2007 (has links)
A fenilcetonúria é um erro inato do metabolismo causado pela deficiência severa da atividade da enzima fenilalanina hidroxilase, a qual converte fenilalanina em tirosina. O bloqueio desta hidroxilação resulta em acúmulo tecidual de fenilalanina e seus metabólitos, ácidos fenilpirúvico, feniláctico e fenilacético. Cabe salientar que a concentração cerebral destes metabólitos está correlacionada positivamente aos níveis plasmáticos de fenilalanina. A doença caracteriza-se por sintomas neurológicos graves tais como retardo mental e convulsões. Apesar de ser uma das aminoacidopatias mais freqüentes e mais estudadas, a neuropatologia da fenilcetonúria ainda não é totalmente compreendida. No presente trabalho, foram investigados os efeitos in vitro dos ácidos fenilpirúvico, feniláctico e fenilacético sobre o estresse oxidativo em homogeneizado de cérebro de ratos jovens, a fim de melhor entender o envolvimento destes metabólitos na disfunção neurológica presente na doença. Foram estudados os seguintes parâmetros: quimiluminescência, substâncias reativas ao ácido tiobarbitúrico (TBA-RS), potencial antioxidante total (TRAP), reatividade antioxidante total (TAR), conteúdo de tióis totais e de grupos carbonila, conteúdo de glutationa (GSH), conteúdo de 2’, 7’ diclorofluoresceína (DCF) e atividade das enzimas antioxidantes: catalase (CAT), superóxido dismutase (SOD) e glutationa peroxidase (GSH-Px). Observamos que o ácido fenilpirúvico aumentou a quimiluminescência, o TBA-RS e o conteúdo de grupos carbonila, de maneira dose-dependente, ainda, este ácido reduziu o TRAP, de maneira dose-dependente, e o conteúdo de GSH. O ácido feniláctico aumentou a quimiluminescência e o TBA-RS, diminuiu o TRAP e o conteúdo de GSH. Já, na presença do ácido fenilacético, houve um aumento significativo do TBA-RS e do conteúdo de DCF. Os três metabólitos testados não alteraram a atividade da enzima antioxidante SOD, porém reduziram a atividade da GSH-Px, de maneira dosedependente, e da CAT. Os resultados obtidos mostram que os metabólitos da fenilalanina alteram parâmetros de estresse oxidativo em cérebro de ratos. Aliados a diversos estudos anteriores em modelo animal e em pacientes com fenilcetonúria, que demonstram que a fenilalanina altera parâmetros de estresse oxidativo, nossos resultados indicam que os metabólitos deste aminoácido também podem estar envolvidos na fisiopatologia dos danos cerebrais observados na fenilcetonúria, sugerindo que o benefício de uma suplementação com antioxidantes à dieta dos pacientes seja estudado a fim de prevenir possíveis danos causados por radicais livres. / Phenylketonuria is an inborn error of metabolism caused by severe deficiency of phenylalanine hydroxylase activity, which converts phenylalanine to tyrosine, leading to tissue accumulation of phenylalanine and its metabolites (phenylpyruvic acid, phenyllactic acid and phenylacetic acid). The concentrations of these metabolites into the brain correlate positively with plasma phenylalanine levels. This disease is characterized by serious neurological features, such as mental retardation and seizures. Although phenylketonuria is one of the most frequent and studied aminoacidopatias, the neuropathology of this disease is poorly understood. In the present work, the in vitro effect of the phenylpyruvic acid, phenyllactic acid and phenylacetic acid on oxidative stress were investigated in brain homogenates of young rats, in order to be better understand the involvement of these metabolites in the neurological dysfunction present in this disease. The following parameters were studied: chemiluminescence, thiobarbituric acid reactive substances (TBA-RS), total radical-trapping antioxidant potential (TRAP), total antioxidant reactivity (TAR), total thiol and carbonyl groups, glutathione (GSH), 2’, 7’ dichlorofluorescein (DCF) and the activities of antioxidants enzymes catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px). We observed that phenylpyruvic acid increased chemiluminescence, TBA-RS and the content of carbonyl groups (in a dosedependent way) and that this acid reduced TRAP (in a dose-dependent way) and GSH levels. Phenyllactic acid increased chemiluminescence and TBA-RS, and reduced TRAP and GSH levels. Phenylacetic acid increased TBA-RS and the measurement of DCF. Any of the metabolites altered the activity of SOD, whereas all of them reduced the activities of GSH-Px (in a dose-dependent way) and CAT. The results show that phenylalanine metabolites alter many parameters of oxidative stress in brain homogenates of young rats. Other studies have been demonstrated that oxidative stress seems to be involved in phenylketonuric animal models and patients. Taking together, these studies and our results suggest that the benefit of an antioxidant supplementation to the diet of these patients might be studied in order to prevent possible damage produced by free radicals.
8

Papel do estresse oxidativo na fisiopatologia da fenilcetonúria

Sitta, Angela January 2011 (has links)
A fenilcetonúria é um erro inato do metabolismo de aminoácidos, causada pela deficiência severa ou ausência na atividade da fenilalanina hidroxilase, enzima que catalisa a hidroxilação da fenilalanina em tirosina na presença do cofator tetra-hidrobiopterina. Como consequência, ocorre o acúmulo da fenilalanina e seus metabólitos nos tecidos e nos líquidos biológicos dos pacientes afetados. O tratamento para a fenilcetonúria consiste em uma dieta restrita em fenilalanina e proteínas, suplementada com uma fórmula especial, contendo aminoácidos (exceto a fenilalanina) e micronutrientes. A principal característica clínica dos pacientes fenilcetonúricos não tratados é o retardo mental e outras alterações neurológicas, cuja base bioquímica é ainda pouco compreendida. Entretanto, nos últimos anos evidências indicam que o estresse oxidativo está envolvido na fisiopatologia da doença. Em estudos prévios, demonstramos que pacientes fenilcetonúricos diagnosticados tardiamente apresentavam aumento na peroxidação lipídica e redução de antioxidantes no momento do diagnóstico e também durante o tratamento, e que esses parâmetros não estavam diretamente relacionados com os níveis sanguíneos de fenilalanina. O objetivo deste trabalho foi o de investigar o papel do dano oxidativo e também das defesas antioxidantes na patogênese da fenilcetonúria. Foi demonstrado que pacientes fenilcetonúricos tratados apresentaram maior dano ao DNA, medido através do ensaio cometa, em comparação aos controles, e que este dano estava relacionado aos níveis sanguíneos elevados de fenilalanina. Neste particular, testes in vitro revelaram um efeito dose-dependente da fenilalanina sobre o dano ao DNA, reforçando os achados in vivo e indicando que a fenilalanina foi responsável por esse dano. Também verificamos que os pacientes fenilcetonúricos com diagnóstico tardio apresentaram maior oxidação a lipídios (determinado através da técnica das espécies reativas ao ácido tiobarbitúrico) e a proteínas (medido através do conteúdo de sulfidrilas e carbonilas) em comparação aos pacientes diagnosticados no período neonatal e aos controles. Portanto, o diagnóstico precoce, além de prevenir o retardo mental, como já descrito na literatura científica, também previne o dano oxidativo a biomoléculas. Por outro lado, foi observada uma redução nas concentrações de antioxidantes não enzimáticos (níveis de glutationa e reatividade antioxidante total) e na atividade da enzima antioxidante glutationa peroxidase em ambos os grupos de pacientes. A diminuição nos antioxidantes é comum em pacientes fenilcetonúricos, sendo atribuída principalmente à dieta restrita. Neste trabalho também verificamos que os pacientes que aderiam estritamente à dieta recomendada apresentavam redução nos níveis sanguíneos de L-carnitina, um composto com ação antioxidante. Além disso, os níveis de L-carnitina nesses pacientes mostraram uma correlação negativa significativa com a lipoperoxidação (medida pelas espécies reativas ao ácido tiobarbitúrico) e uma correlação positiva significativa com a reatividade antioxidante total. Os dados sugerem que a deficiência em L-carnitina está relacionada com o estresse oxidativo em pacientes fenilcetonúricos e, portanto, sua suplementação deva ser considerada como uma terapia adjuvante. De fato, a suplementação com L-carnitina e selênio (outro composto antioxidante deficiente em pacientes fenilcetonúricos) foi capaz de corrigir a oxidação a lipídios e proteínas (medida pelas espécies reativas ao ácido tiobarbitúrico e pelo conteúdo de sulfidrilas, respectivamente), além de normalizar a atividade da enzima glutationa peroxidase. Adicionalmente, foi verificada uma correlação negativa significativa entre a peroxidação lipídica e os níveis sanguíneos de Lcarnitina, assim como uma correlação positiva significativa entre a atividade da glutationa peroxidase e a concentração sanguínea de selênio. Em conjunto, nossos resultados sugerem que o estresse oxidativo está envolvido na patogênese da fenilcetonúria. Considerando que nossos resultados possam ser extrapolados para o cérebro, que possui menos defesas antioxidantes e vários fatores que aumentam a produção de radicais livres, pode ser proposto que o dano oxidativo contribui, pelo menos em parte, com a disfunção neurológica na fenilcetonúria, e, portanto, que a administração dos antioxidantes deficientes nesta patologia deva ser considerada na terapia da doença. / Phenylketonuria is an inborn error of amino acid metabolism, caused by severe deficiency or absence of phenylalanine hydroxylase activity, enzyme that catalyzes the hydroxylation of phenylalanine to tyrosine in the presence of the cofactor tetrahydrobiopterin. As consequence, the accumulation of phenylalanine and its metabolites in tissues and biologic fluids of affected patients occurs. The treatment for phenylketonuria consists in a phenylalanine and protein-restricted diet, supplemented with a special formula containing amino acids (except phenylalanine) and micronutrients. The main clinical characterization of untreated phenylketonuric patients is mental retardation and other neurological features, whose biochemical basis is poorly understood. However, in recent years evidences indicate that oxidative stress is involved in the pathophysiology of the disease. In previous studies it was demonstrated that phenylketonuric patients late diagnosed presented increased lipid peroxidation and reduced antioxidants at the moment of diagnosis and also during the treatment, and that these parameters were not directly related to the phenylalanine blood levels. The objective of this work was to investigate the role of the oxidative damage and of antioxidant defenses on pathogenesis of phenylketonuria. It was demonstrated that phenylketonuric patients under treatment presented increased DNA damage, measured by the comet assay, compared to controls, which was related to phenylalanine blood levels. In this particular, in vitro tests revealed a dose-dependent effect of phenylalanine on DNA damage, reinforcing in vivo findings indicating that the phenylalanine was responsible for this damage. We also verified that phenylketonuric patients late diagnosed presented increased lipid (determined by thiobarbituric acid-reactive species) and protein oxidation (measured by sulphydryl and carbonyl groups) when compared to patients diagnosed in the neonatal period and to controls. Therefore, early diagnosis besides to prevent mental retardation, as described in the scientific literature, also prevents oxidative damage to biomolecules. On the other hand, it was observed a reduction in the concentration of non-enzymatic antioxidants (glutathione levels and total antioxidant reactivity) as well as in the activity of glutathione peroxidase enzyme in both groups of patients. The reduction in antioxidants is common in phenylketonuric patients being mainly attributed to the restricted diet. In this work, we also verified that patients who strictly adhered to the recommended diet present reduction in blood L-carnitine levels, a compound with an antioxidant action. Also, the levels of L-carnitine in these patients showed a significant negative correlation with lipid peroxidation (measured by thiobarbituric acid-reactive species) and a significant positive correlation with the total antioxidant reactivity. This suggests that L-carnitine deficiency is related to oxidative stress in phenylketonuric patients and therefore the supplementation should be considered as an adjuvant therapy. In fact, the supplementation with L-carnitine and selenium (other antioxidant compound deficient in phenylketonuric patients) was capable to correct the lipid and protein oxidation (measured by thiobarbituric acid-reactive species and sulphydryl content, respectively) besides to normalize the glutathione peroxidase activity. In addiction, it was verified a significant inverse correlation between lipid peroxidation and L-carnitine blood levels as well as a significant positive correlation between glutathione peroxidase activity and blood selenium concentration. Taken these results together, our results suggest that oxidative stress is involved in the pathogenesis of phenylketonuria. Considering that our results may be extrapolated to the brain, which has less antioxidant defenses and several other factors that increase the production of free radicals, it may be propose that the oxidative damage contributes, at least in part, to the neurological dysfunction in phenylketonuria and, therefore, the administration of deficient antioxidants in this pathology should be considered in the therapy of the disease.
9

Efeito da fenilalanina e da alanina sobre as atividades dos complexos da cadeia respiratória de córtex cerebral de ratos

Rech, Virgínia Cielo January 2002 (has links)
A fenilcetonúria (PKU) é caracterizada bioquimicamente pelo acúmulo de fenilalanina (Phe) e seus metabólitos nos tecidos dos pacientes afetados. O dano neurológico é a marca da PKU e a Phe é considerada o principal agente neurotóxico nesta doença, cujos mecanismos de neurotoxicidade são pouco conhecidos. A alanina (Ala) é nutricionalmente um aminoácido não essencial. Ela é o principal aminoácido gliconeogênico porque pode originar piruvato e glicose, tendo sido, por este motivo, usada como um suplemento dietético em combinação com o hormônio de crescimento no tratamento de crianças subnutridas afetadas por algumas doenças metabólicas herdadas, para induzir o anabolismo. O principal objetivo do presente trabalho foi medir as atividades dos complexos da cadeia respiratória mitocondrial (CCR) e succinato desidrogenase (SDH) no córtex cerebral de ratos Wistar sujeitos à hiperfenilalaninemia (HPA) quimicamente induzida e à administração crônica de Ala, desde o 6± até o 21± dia de vida pós-natal. Também investigamos o efeito in vitro da Phe e Ala nas atividades da SDH e CCR em córtex cerebral de ratos de 22 dias de idade. Os resultados mostraram uma redução nas atividades da SDH e complexos I + III no córtex cerebral de ratos sujeitos à HPA e também no córtex cerebral de ratos sujeitos à administração de Ala. Também verificamos que ambos: Phe e Ala inibiram in vitro a atividade dos complexos I + III por competição com NADH. Considerando a importância da SDH e CCR para a sustentação do suprimento energético para o cérebro, nossos resultados sugerem que o déficit energético possa contribuir para a neurotoxicidade da Phe em PKU. Em relação à Ala, ficou evidenciado que mais investigações serão necessárias antes de considerar a suplementação com Ala como uma terapia adjuvante válida para crianças com estas doenças.
10

Efeito da fenilalanina e da alanina sobre as atividades dos complexos da cadeia respiratória de córtex cerebral de ratos

Rech, Virgínia Cielo January 2002 (has links)
A fenilcetonúria (PKU) é caracterizada bioquimicamente pelo acúmulo de fenilalanina (Phe) e seus metabólitos nos tecidos dos pacientes afetados. O dano neurológico é a marca da PKU e a Phe é considerada o principal agente neurotóxico nesta doença, cujos mecanismos de neurotoxicidade são pouco conhecidos. A alanina (Ala) é nutricionalmente um aminoácido não essencial. Ela é o principal aminoácido gliconeogênico porque pode originar piruvato e glicose, tendo sido, por este motivo, usada como um suplemento dietético em combinação com o hormônio de crescimento no tratamento de crianças subnutridas afetadas por algumas doenças metabólicas herdadas, para induzir o anabolismo. O principal objetivo do presente trabalho foi medir as atividades dos complexos da cadeia respiratória mitocondrial (CCR) e succinato desidrogenase (SDH) no córtex cerebral de ratos Wistar sujeitos à hiperfenilalaninemia (HPA) quimicamente induzida e à administração crônica de Ala, desde o 6± até o 21± dia de vida pós-natal. Também investigamos o efeito in vitro da Phe e Ala nas atividades da SDH e CCR em córtex cerebral de ratos de 22 dias de idade. Os resultados mostraram uma redução nas atividades da SDH e complexos I + III no córtex cerebral de ratos sujeitos à HPA e também no córtex cerebral de ratos sujeitos à administração de Ala. Também verificamos que ambos: Phe e Ala inibiram in vitro a atividade dos complexos I + III por competição com NADH. Considerando a importância da SDH e CCR para a sustentação do suprimento energético para o cérebro, nossos resultados sugerem que o déficit energético possa contribuir para a neurotoxicidade da Phe em PKU. Em relação à Ala, ficou evidenciado que mais investigações serão necessárias antes de considerar a suplementação com Ala como uma terapia adjuvante válida para crianças com estas doenças.

Page generated in 0.4603 seconds