• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Restauração de imagens médicas utilizando o filtro de Kalman / not available

Mello, Edson Batista de 13 October 1998 (has links)
Neste trabalho técnicas de restauração de imagens aplicadas à filtragem de imagens médicas foram estudadas. Considera-se uma abordagem recursiva de filtragem e suas diversas implementações em duas dimensões. A implementação utilizada neste trabalho foi a do filtro de Kalman de atualização reduzida (RUKF). Na implementação do filtro de Kalman de atualização reduzida um quarto de plano (QP) foi tomado como região de suporte e um modelo autoregressivo bidimensional (AR 2-D) foi utilizado como modelo de imagem. Os parâmetros do modelo AR 2-D e a variância do ruído foram encontrados através de uma implementação do algoritmo de Levinson para duas dimensões baseada no algoritmo de Levinson em configuração multicanal. A ordem do modelo AR 2-D foi determinada pelo critério de informação de Akaike (AIC). Para análise de resultados o filtro de Kalman de atualização reduzida foi aplicado em uma imagem planar, considerada invariante no espaço e com ruído ele observação não estacionário, e os resultados comparados àqueles obtidos com o filtro de Wiener. / In this work image restoration techniques for the filtering of medicai images are studied. Emphasis is given to the recursive approach to image restoration and its different implementations are described. The implementation used in the restoration procedure is the reduced update Kalman filter (RUKF). In the implementation of the reduced update Kalman filter a quarter plane is adopted as the region of support and a 2-D autoregressive (AR) model is used as the image model. The parameters of the 2-D AR model and the variance of the driving noise are found by a 2-D implementation of the Levinson algorithm. The model order of the 2-D AR model is determined by the Akaike information criterion (AIC). For the analysis of the results, the reduced update Kalman filter is applied to a space invariant plane image with nonstationary noise. The results are compared to the results of the Wiener filter.
2

Restauração de imagens médicas utilizando o filtro de Kalman / not available

Edson Batista de Mello 13 October 1998 (has links)
Neste trabalho técnicas de restauração de imagens aplicadas à filtragem de imagens médicas foram estudadas. Considera-se uma abordagem recursiva de filtragem e suas diversas implementações em duas dimensões. A implementação utilizada neste trabalho foi a do filtro de Kalman de atualização reduzida (RUKF). Na implementação do filtro de Kalman de atualização reduzida um quarto de plano (QP) foi tomado como região de suporte e um modelo autoregressivo bidimensional (AR 2-D) foi utilizado como modelo de imagem. Os parâmetros do modelo AR 2-D e a variância do ruído foram encontrados através de uma implementação do algoritmo de Levinson para duas dimensões baseada no algoritmo de Levinson em configuração multicanal. A ordem do modelo AR 2-D foi determinada pelo critério de informação de Akaike (AIC). Para análise de resultados o filtro de Kalman de atualização reduzida foi aplicado em uma imagem planar, considerada invariante no espaço e com ruído ele observação não estacionário, e os resultados comparados àqueles obtidos com o filtro de Wiener. / In this work image restoration techniques for the filtering of medicai images are studied. Emphasis is given to the recursive approach to image restoration and its different implementations are described. The implementation used in the restoration procedure is the reduced update Kalman filter (RUKF). In the implementation of the reduced update Kalman filter a quarter plane is adopted as the region of support and a 2-D autoregressive (AR) model is used as the image model. The parameters of the 2-D AR model and the variance of the driving noise are found by a 2-D implementation of the Levinson algorithm. The model order of the 2-D AR model is determined by the Akaike information criterion (AIC). For the analysis of the results, the reduced update Kalman filter is applied to a space invariant plane image with nonstationary noise. The results are compared to the results of the Wiener filter.

Page generated in 0.3631 seconds