• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 41
  • 18
  • 4
  • 3
  • 3
  • 2
  • 1
  • Tagged with
  • 84
  • 84
  • 84
  • 25
  • 23
  • 20
  • 16
  • 13
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Finite Element Simulation of the Compaction and Springback of an Aluminum Powder Metallurgy Alloy

Selig, Stanley 22 March 2012 (has links)
A new finite element model was developed to predict the density distribution in an Alumix 321 powder metallurgy compact. The model can predict the density distribution results of single-action compaction from 100 to 500 MPa compaction pressure. The model can also determine the amount of springback experienced by a compact upon ejection from the die at 100 and 300 MPa compaction pressure. An optical densitometry method, along with the creation of a compaction curve, was used to experimentally predict density distributions found within compacts, and found results that were consistent with both literature and finite element simulation. Further powder characterization included testing apparent density and flow rate of the powder. A literature review was also conducted and the results of which have been organized by three categories (powder type, material model, and finite element code) for easy reference by future powder researchers.
2

Study on die surface design and loading paths for T-shape tube hydroforming with different diameters in the outlets

Kang, Nai-shin 08 September 2010 (has links)
Die surface shape may improve the flow of materials, reduce stress concentration of the products, and decrease the processing load to extend the life of die. The objective of this paper is to show that how to design the die surface shape of T-shape protrusion hydroforming with different diameters. A finite element code DEFORM 3D is used to simulate the process of THF, including adaptive simulation to predict the internal pressurization in the tube, and utilize flow net distribution to predict the axial feeding stroke and counter punch (CP) movement. After the amendment to the loading path, the flowability and appearance of the product quality will achieve the best results. Experiments of T-shape warm hydroforming of magnesium alloy AZ61 tubes are. The forming temperature is set as 250¢J. The simulated loading paths are used. From the comparisons of product shape, thickness distribution between analytical and experimental values, the validity of this analytical model is verified.. Keywords: Tube hydroforming, Finite element simulation, Die surface design.
3

Study on formability of three-way magnesium tubes by warm hydroforming

Su, Yan-Huang 03 September 2008 (has links)
Magnesium alloy tubes have good formability at elevated temperatures. In this study, a finite element code DEFORM 3D is used to simulate the result of T-shape hydroforming at working temperatures 150¢J and 250¢J with magnesium alloy AZ61 tubes and then conducts the hydroforming experiments. By modifying the loading paths, products with uniform thickness and branch height are obtained 49mm. The results of simulation are compared with the experimental results to verify the validity of this modeling. On the other hand, the effects of the die fillet radius on tube formability during y-shape hydroforming are discussed. With the right die fillet radius r1¡×10mm and the left die fillet radius r2¡×30mm, a better formability of the tube is obtained.
4

The Evaluation of the Numerical Methods to Study the Buckling of Stiff Films on Elastomeric Substrates

January 2010 (has links)
abstract: Ordered buckling of stiff films on elastomeric substrates has many applications in the field of stretchable electronics. Mechanics plays a very important role in such systems. A full three dimensional finite element analysis studying the pattern of wrinkles formed on a stiff film bonded to a compliant substrate under the action of a compressive force has been widely studied. For thin films, this wrinkling pattern is usually sinusoidal, and for wide films the pattern depends on loading conditions. The present study establishes a relationship between the effect of the load applied at an angle to the stiff film. A systematic experimental and analytical study of these systems has been presented in the present study. The study is performed for two different loading conditions, one with the compressive force applied parallel to the film and the other with an angle included between the application of the force and the alignment of the stiff film. A geometric model closely resembling the experimental specimen studied is created and a three dimensional finite element analysis is carried out using ABAQUS (Version 6.7). The objective of the finite element simulations is to validate the results of the experimental study to be corresponding to the minimum total energy of the system. It also helps to establish a relation between the parameters of the buckling profile and the parameters (elastic and dimensional parameters) of the system. Two methods of non-linear analysis namely, the Newton-Raphson method and Arc-Length method are used. It is found that the Arc-Length method is the most cost effective in terms of total simulation time for large models (higher number of elements).The convergence of the results is affected by a variety of factors like the dimensional parameters of the substrate, mesh density of the model, length of the substrate and the film, the angle included. For narrow silicon films the buckling profile is observed to be sinusoidal and perpendicular to the direction of the silicon film. As the angle increases in wider stiff films the buckling profile is seen to transit from being perpendicular to the direction of the film to being perpendicular to the direction of the application of the pre-stress. This study improves and expands the application of the stiff film buckling to an angled loading condition. / Dissertation/Thesis / M.S. Mechanical Engineering 2010
5

Advanced methods for finite element simulation for part and process design in tube hydroforming

Jirathearanat, Suwat 03 February 2004 (has links)
No description available.
6

DETERMINATION OF ISOLATOR TRANSFER MATRIX AND INSERTION LOSS WITH APPLICATION TO SPRING MOUNTS

Sun, Shishuo 01 January 2015 (has links)
Transmissibility is the most common metric used for isolator characterization. However, engineers are becoming increasingly concerned about energy transmission through an isolator at high frequencies and how the compliance of the machine and foundation factor into the performance. In this study, the transfer matrix approach for isolator characterization is first reviewed. Two methods are detailed for determining the transfer matrix of an isolator using finite element simulation. This is accomplished by determining either the mobility or impedance matrix for the isolator and then converting to a transfer matrix. One of the more useful metrics to characterize the high frequency performance of an isolator is insertion loss. Insertion loss is defined as the difference in transmitted vibration in decibels between the unisolated and isolated cases. Insertion loss takes into account the compliance on the source and receiver sides. Accordingly, it has some advantages over transmissibility which is a function of the damping and mounted resonant frequency. A static analysis is to preload the isolator so that stress stiffening is accounted for. This is followed by modal and forced response analyses to identify the transfer matrix of the isolator. In this paper, the insertion loss of spring isolators is examined as a function of several geometric parameters including the spring diameter, wire diameter, number of active coils, and height. Results demonstrate how modifications to these parameters affect the insertion loss and the first surge frequency.
7

Multi-functional fitness chair for light weight trainer

Fan, Rong, Wu, Peng January 2016 (has links)
Nowadays, physical inactivity has become a global problem. According to the research, about 5.3 million deaths all over the world in 2008 could be attributed to inactivity [1]. However, it is enough to do a little exercise every day to reduce the risk of premature deaths by as much as 30 percent. Due to the increasing working pressure, people do not have enough time to go to gym and do exercises, which means that the design of multi-functional fitness chair is necessary so that people can do exercise at home at any time.There have already been many similar household fitness products in the market, but most of them take up large space and the training part is very simple. In comparison, the multi-function fitness chair designed in this thesis combines several fitness equipment together in one chair, so it would save a lot of space, and yet provides possibility to perform versatile exercise.The product was designed in Autodesk Inventor 2015, and finite element analysis was performed in Inventor 2015 and for checking the strength and safety of the design.
8

MODELING, SIMULATION AND ANALYSIS OF MULTI-BARGE FLOTILLAS IMPACTING BRIDGE PIERS

Yuan, Peng 01 January 2005 (has links)
The current design code governing bridge structure resistance to vessel impact loads in the U.S. is the American Association of State Highway and Transportation Officials' (AASHTO) Guide Specification and Commentary for Vessel Collision Design of Highway Bridges. The code stipulated method, based on Meir-Dornberg's equivalent static load method, is usually not warranted because of insufficient data on the impact load histories and wide scatter of the impact force values. The AASHTO load equations ignore certain fundamental factors that affect the determination of impact forces and bridge dynamic responses. Some examples of factors that are omitted during standard impact force analysis are: impact duration, pier geometry, barge-barge and barge-pier interactions, and structural characteristics of bridges. The purpose of this research is to develop new methods and models for predicting barge impact forces on piers. In order to generate research information and produce more realistic flotilla impact data, extensive finite element simulations are conducted. A set of regression formulas to calculate the impact force and time duration are derived from the simulation results. Also, a parametric study is performed systematically to reveal the dynamic features of barge-bridge collisions. A method to determine the quasi upper bound of the average impact force under any given scenarios is preposed. Based on the upper bounds of the average impact forces, an impact spectrum procedure to determine the dynamic response of piers is developed. These analytical techniques transform the complex dynamics of barge-pier impact into simple problems that can be solved through hand calculations or design charts. Furthermore, the dependency of the impact forces on barge-barge and barge-pier interactions are discussed in detail. An elastoplastic model for the analysis of multi-barge flotillas impacting on bridge piers is presented. The barge flotilla impact model generates impact force time-histories for various simulation cases in a matter of minutes. The results from the proposed model are compatible with the respective impact time-histories produced by an exhuaustive finite element simulation. All of the proposed methods and loading functions in this study are illustrated through design examples. Accordingly, the research results may help engineers to enhance bridge resistance to barge impacts and also lead to economic savings in bridge protection design.
9

A Multi-Function Walker for Assisting Elderly Mobility / En multifunktions Walker för att bistå äldre Mobility

Zhao, Mengfei, Shi, Jindou January 2016 (has links)
The walker is regarded as a promising solution to provide additional support to maintain balance or stability while walking for elderly people. Significant assistance in improving mobility technology have been observed from literature review. However, the walkers available in the market is possible to optimize in design and include additional functionality, including getting out of the seat at home with caregiver aid, emergency care aided system. Considering falling down is a public healthcare problem, we designed the emergency aided system to rescue them [1].   In this paper, we proposed a multiple function elderly mobility and emergency aid system, was developed and modelled by Inventor 2015, and finite element analysis. Simulation was then created to get the value of safety factor, and make comparison base on the results from structural calculation. Finally, the application of few features of the improved walker was illustrated.
10

Monte Carlo and Charge Transport Simulation of Pixel Detector Systems

Krapohl, David January 2015 (has links)
This thesis is about simulation of semiconductor X-ray and particledetectors. The simulation of a novel coating for solid state neutrondetectors is discussed as well as the implementation of a simulationframework for hybrid pixel detectors.Today’s most common thermal neutron detectors are proportionalcounters, that use 3He gas in large tubes or multi wire arrays. Globalnuclear disarmament and the increase in use for homeland securityapplications has created a shortage of the gas which poses a problemfor neutron spallation sources that require higher resolution and largersensors. In this thesis a novel material and clean room compatible pro-cess for neutron conversion are discussed. Simulations and fabricationhave been executed and analysed in measurements. It has been proventhat such a device can be fabricated and detect thermal neutrons.Spectral imaging hybrid pixel detectors like the Medipix chipare the most advanced imaging systems currently available. Thesechips are highly sophisticated with several hundreds of transistors perpixel to enable features like multiple thresholds for noise free photoncounting measurements, spectral imaging as well as time of arrivalmeasurements. To analyse and understand the behaviour of differentsensor materials bonded to the chip and to improve development offuture generations of the chip simulations are necessary. Generally, allparts of the detector system are simulated independently. However, itis favourable to have a simulation framework that is able to combineMonte Carlo particle transport, charge transport in the sensor as wellas analogue and digital response of the pixel read-out electronics. Thisthesis aims to develop such a system that has been developed withGeant4 and analytical semiconductor and electronics models. Further-more, it has been verified with data from measurements with severalMedipix and Timepix sensors as well as TCAD simulations.Results show that such a framework is feasible even for imagingsimulations. It shows great promise to be able to be extended withfuture pixel detector designs and semiconductor materials as well asneutron converters to aim for next generation imaging devices.

Page generated in 0.1603 seconds