• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 323
  • 285
  • 102
  • 10
  • 1
  • Tagged with
  • 716
  • 716
  • 716
  • 422
  • 227
  • 227
  • 227
  • 180
  • 169
  • 161
  • 141
  • 92
  • 90
  • 58
  • 58
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
251

Parabolische Randanfangswertprobleme mit zufälliger Anfangsbedingung

Kandler, Anne, Richter, Matthias, vom Scheidt, Jürgen 07 October 2005 (has links) (PDF)
In dieser Arbeit werden parabolische Randanfangswertprobleme mit zufälliger Anfangs- und Neumann-Randbedingung betrachtet. Die zufälligen Einflußgrößen werden dabei als epsilon-korrelierte, zufällige Felder modelliert. Das Hauptinteresse liegt auf der Berechnung stochastischer Kenngrößen der auf Basis der Finite-Elemente Methode erhaltenen Lösung des Randanfangswertproblems. Für die Korrelationsfunktion der Lösung wird eine Entwicklung nach der Korrelationslänge sowie eine explizite Berechnung für spezielle Typen der Vernetzung vorgestellt. Anhand von numerischen Beispielen werden abschließend die auf den verschiedenen Wegen erhaltenen Varianzen mit der einer simulierten Lösung verglichen.
252

Visualization Tools for 2D and 3D Finite Element Programs - User's Manual

Pester, Matthias 04 April 2006 (has links) (PDF)
This paper deals with the visualization of numerical results as a very convenient method to understand and evaluate a solution which has been calculated as a set of millions of numerical values. One of the central research fields of the Chemnitz SFB 393 is the analysis of parallel numerical algorithms for large systems of linear equations arising from differential equations (e.g. in solid and fluid mechanics). Solving large problems on massively parallel computers makes it more and more impossible to store numerical data from the distributed memory of the parallel computer to the disk for later postprocessing. However, the developer of algorithms is interested in an on-line response of his algorithms. Both visual and numerical response of the running program may be evaluated by the user for a decision how to switch or adjust interactively certain parameters that may influence the solution process. The paper gives a survey of current programmer and user interfaces that are used in our various 2D and 3D parallel finite element programs for the visualization of the solution.
253

Fast solvers for degenerated problems

Beuchler, Sven 11 April 2006 (has links) (PDF)
In this paper, finite element discretizations of the degenerated operator -&omega;<sup>2</sup>(y) u<sub>xx</sub>-&omega;<sup>2</sup>(x)u<sub>yy</sub>=g in the unit square are investigated, where the weight function satisfies &omega;(&xi;)=&xi;<sup>&alpha;</sup> with &alpha; &ge; 0. We propose two multi-level methods in order to solve the resulting system of linear algebraic equations. The first method is a multi-grid algorithm with line-smoother. A proof of the smoothing property is given. The second method is a BPX-like preconditioner which we call MTS-BPX preconditioner. We show that the upper eigenvalue bound of the MTS-BPX preconditioned system matrix grows proportionally to the level number.
254

Randkonzentrierte und adaptive hp-FEM

Eibner, Tino 12 July 2006 (has links) (PDF)
Die vorliegende Arbeit befasst sich mit verschiedenen Aspekten der hp-FEM. Insbesondere werden hierbei folgende Punkte genauer untersucht: 1. Das effiziente Aufstellen der Steifigkeitsmatrix auf Referenzelementen, die keine Tensorproduktstruktur besitzen. 2. Eine lokale Konvergenzbetrachtung für die randkonzentrierte hp-FEM. 3. Ein Multilevel-Löser für die randkonzentrierte hp-FEM. 4. Eine Strategie für hp-Adaptivität.
255

Clément-type interpolation on spherical domains - interpolation error estimates and application to a posteriori error estimation

Apel, Thomas, Pester, Cornelia 31 August 2006 (has links) (PDF)
In this paper, a mixed boundary value problem for the Laplace-Beltrami operator is considered for spherical domains in $R^3$, i.e. for domains on the unit sphere. These domains are parametrized by spherical coordinates (\varphi, \theta), such that functions on the unit sphere are considered as functions in these coordinates. Careful investigation leads to the introduction of a proper finite element space corresponding to an isotropic triangulation of the underlying domain on the unit sphere. Error estimates are proven for a Clément-type interpolation operator, where appropriate, weighted norms are used. The estimates are applied to the deduction of a reliable and efficient residual error estimator for the Laplace-Beltrami operator.
256

The robustness of the hierarchical a posteriori error estimator for reaction-diffusion equation on anisotropic meshes

Grosman, Serguei 01 September 2006 (has links) (PDF)
Singularly perturbed reaction-diffusion problems exhibit in general solutions with anisotropic features, e.g. strong boundary and/or interior layers. This anisotropy is reflected in the discretization by using meshes with anisotropic elements. The quality of the numerical solution rests on the robustness of the a posteriori error estimator with respect to both the perturbation parameters of the problem and the anisotropy of the mesh. The simplest local error estimator from the implementation point of view is the so-called hierarchical error estimator. The reliability proof is usually based on two prerequisites: the saturation assumption and the strengthened Cauchy-Schwarz inequality. The proofs of these facts are extended in the present work for the case of the singularly perturbed reaction-diffusion equation and of the meshes with anisotropic elements. It is shown that the constants in the corresponding estimates do neither depend on the aspect ratio of the elements, nor on the perturbation parameters. Utilizing the above arguments the concluding reliability proof is provided as well as the efficiency proof of the estimator, both independent of the aspect ratio and perturbation parameters.
257

Entwicklung von adaptiven Algorithmen für nichtlineare FEM

Bucher, Anke, Meyer, Arnd, Görke, Uwe-Jens, Kreißig, Reiner 01 September 2006 (has links) (PDF)
The development of adaptive finite element procedures for the solution of geometrically and physically nonlinear problems in structural mechanics is very important for the augmentation of the efficiency of FE-codes. In this contribution methods of mesh refinement as well as mesh coarsening are presented for a material model considering finite elasto-plastic deformations. For newly generated elements stresses, strains and internal variables have to be calculated. This implies the determination of the nodal values as well as the Gaussian point values of the new elements based on the transfer of data from the former mesh. Analogously, the coarsening of less important elements necessitates the determination of these values for the newly created father elements.
258

An adaptive strategy for hp-FEM based on testing for analyticity

Eibner, Tino, Melenk, Jens Markus 01 September 2006 (has links) (PDF)
We present an $hp$-adaptive strategy that is based on estimating the decay of the expansion coefficients when a function is expanded in $L^2$-orthogonal polynomails on a triangle or a tetrahedron. This method is justified by showing that the decay of the coefficients is exponential if and only if the function is analytic. Numerical examples illustrate the performance of this approach, and we compare it with two other $hp$-adaptive strategies.
259

The Fourier-finite-element method with Nitsche-mortaring

Heinrich, Bernd, Jung, Beate 01 September 2006 (has links) (PDF)
The paper deals with a combination of the Fourier-finite-element method with the Nitsche-finite-element method (as a mortar method). The approach is applied to the Dirichlet problem of the Poisson equation in three-dimensional axisymmetric domains $\widehat\Omega$ with non-axisymmetric data. The approximating Fourier method yields a splitting of the 3D-problem into 2D-problems. For solving the 2D-problems on the meridian plane $\Omega_a$, the Nitsche-finite-element method with non-matching meshes is applied. Some important properties of the approximation scheme are derived and the rate of convergence in some $H^1$-like norm is proved to be of the type ${\mathcal O}(h+N^{-1})$ ($h$: mesh size on $\Omega_a$, $N$: length of the Fourier sum) in case of a regular solution of the boundary value problem. Finally, some numerical results are presented.
260

Fast algorithms for setting up the stiffness matrix in hp-FEM: a comparison

Eibner, Tino, Melenk, Jens Markus 11 September 2006 (has links) (PDF)
We analyze and compare different techniques to set up the stiffness matrix in the hp-version of the finite element method. The emphasis is on methods for second order elliptic problems posed on meshes including triangular and tetrahedral elements. The polynomial degree may be variable. We present a generalization of the Spectral Galerkin Algorithm of [7], where the shape functions are adapted to the quadrature formula, to the case of triangles/tetrahedra. Additionally, we study on-the-fly matrix-vector multiplications, where merely the matrix-vector multiplication is realized without setting up the stiffness matrix. Numerical studies are included.

Page generated in 0.0602 seconds