• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 43
  • 6
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 64
  • 64
  • 47
  • 14
  • 13
  • 13
  • 12
  • 9
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Valuing credit risky bonds: generalizations of first passage models

Loulit, Ahmed 13 September 2006 (has links)
This work develops some simple models to study risky corporate debt using first passage-time approach. Analytical valuation expression derived from different models as functions of firm’s values and the short-term interest rate with time-dependent parameters governing the dynamics of the firm values and interest rate. We develop some numerical approximation of the analytical valuation, which is given implicitly through Voltera integral equation related to the density of the first-passage- time that a firm reaches some specified default barrier. For some appropriate default barrier arising from financial considerations we obtain a closed-form solution, which is more flexible for numerical calculation.
2

Beyond Classical Nucleation Theory: A 2-D Lattice-Gas Automata Model

Hickey, Joseph 10 August 2012 (has links)
Nucleation is the first step in the formation of a new phase in a thermodynamic system. The Classical Nucleation Theory (CNT) is the traditional theory used to describe this phenomenon. The object of this thesis is to investigate nucleation beyond one of the most significant limitations of the CNT: the assumption that the surface tension of a nucleating cluster of the new phase is independent of the cluster’s size and has the same value that it would have in the bulk of the new phase. In order to accomplish this, we consider a microscopic, two-dimensional Lattice Gas Automata (LGA) model of precipitate nucleation in a supersaturated system, with model input parameters Ess (solid particle-to-solid particle bonding energy), Esw (solid particle-to-water particle bonding energy), η (next-to-nearest neighbour bonding coeffiicent in solid phase), and Cin (initial solute concentration). The LGA method was chosen for its advantages of easy implementation, low memory requirements, and fast computation speed. Analytical results for the system’s concentration and the crystal radius as functions of time are derived and the former is fit to the simulation data in order to determine the system’s equilibrium concentration. A mean first-passage time (MFPT) technique is used to obtain the nucleation rate and critical nucleus size from the simulation data. The nucleation rate and supersaturation are evaluated using a modification to the CNT that incorporates a two-dimensional, radius-dependent surface tension term. The Tolman parameter, δ, which controls the radius-dependence of the surface tension, decreases (increases) as a function of the magnitude of Ess (Esw), at fixed values of η and Esw (Ess). On the other hand, δ increases as η increases while Ess and Esw are held constant. The constant surface tension term of the CNT, Σ0, increases (decreases) with increasing magnitudes of Ess (Esw) fixed values of Esw (Ess), and increases as η is increased. Together, these results indicate an increase in the radius-dependent surface tension, Σ, with respect to increasing magnitude of Ess relative to the magnitude of Esw. Σ0 increases linearly as a function of the change in energy during an attachment or detachment reaction, |ΔE|, however with a slope less than that predicted for a crystal that is uniformly packed at maximum density.
3

Beyond Classical Nucleation Theory: A 2-D Lattice-Gas Automata Model

Hickey, Joseph 10 August 2012 (has links)
Nucleation is the first step in the formation of a new phase in a thermodynamic system. The Classical Nucleation Theory (CNT) is the traditional theory used to describe this phenomenon. The object of this thesis is to investigate nucleation beyond one of the most significant limitations of the CNT: the assumption that the surface tension of a nucleating cluster of the new phase is independent of the cluster’s size and has the same value that it would have in the bulk of the new phase. In order to accomplish this, we consider a microscopic, two-dimensional Lattice Gas Automata (LGA) model of precipitate nucleation in a supersaturated system, with model input parameters Ess (solid particle-to-solid particle bonding energy), Esw (solid particle-to-water particle bonding energy), η (next-to-nearest neighbour bonding coeffiicent in solid phase), and Cin (initial solute concentration). The LGA method was chosen for its advantages of easy implementation, low memory requirements, and fast computation speed. Analytical results for the system’s concentration and the crystal radius as functions of time are derived and the former is fit to the simulation data in order to determine the system’s equilibrium concentration. A mean first-passage time (MFPT) technique is used to obtain the nucleation rate and critical nucleus size from the simulation data. The nucleation rate and supersaturation are evaluated using a modification to the CNT that incorporates a two-dimensional, radius-dependent surface tension term. The Tolman parameter, δ, which controls the radius-dependence of the surface tension, decreases (increases) as a function of the magnitude of Ess (Esw), at fixed values of η and Esw (Ess). On the other hand, δ increases as η increases while Ess and Esw are held constant. The constant surface tension term of the CNT, Σ0, increases (decreases) with increasing magnitudes of Ess (Esw) fixed values of Esw (Ess), and increases as η is increased. Together, these results indicate an increase in the radius-dependent surface tension, Σ, with respect to increasing magnitude of Ess relative to the magnitude of Esw. Σ0 increases linearly as a function of the change in energy during an attachment or detachment reaction, |ΔE|, however with a slope less than that predicted for a crystal that is uniformly packed at maximum density.
4

Multivariate First-Passage Models in Credit Risk

Metzler, Adam January 2008 (has links)
This thesis deals with credit risk modeling and related mathematical issues. In particular we study first-passage models for credit risk, where obligors default upon first passage of a ``credit quality" process to zero. The first passage problem for correlated Brownian motion is a mathematical structure which arises quite naturally in such models, in particular the seminal multivariate Black-Cox model. In general this problem is analytically intractable, however in two dimensions analytic results are available. In addition to correcting mistakes in several published formulae, we derive an exact simulation scheme for sampling the passage times. Our algorithm exploits several interesting properties of planar Brownian motion and conformal local martingales. The main contribution of this thesis is the development of a novel multivariate framework for credit risk. We allow for both stochastic trend and volatility in credit qualities, with dependence introduced by letting these quantities be driven by systematic factors common to all obligors. Exploiting a conditional independence structure we are able to express the proportion of defaults in an asymptotically large portfolio as a path functional of the systematic factors. The functional in question returns crossing probabilities of time-changed Brownian motion to continuous barriers, and is typically not available in closed form. As such the distribution of portfolio losses is in general analytically intractable. As such we devise a scheme for simulating approximate losses and demonstrate almost sure convergence of this approximation. We show that the model calibrates well, across both tranches and maturities, to market quotes for CDX index tranches. In particular we are able to calibrate to data from 2006, as well as more recent ``distressed" data from 2008.
5

Multivariate First-Passage Models in Credit Risk

Metzler, Adam January 2008 (has links)
This thesis deals with credit risk modeling and related mathematical issues. In particular we study first-passage models for credit risk, where obligors default upon first passage of a ``credit quality" process to zero. The first passage problem for correlated Brownian motion is a mathematical structure which arises quite naturally in such models, in particular the seminal multivariate Black-Cox model. In general this problem is analytically intractable, however in two dimensions analytic results are available. In addition to correcting mistakes in several published formulae, we derive an exact simulation scheme for sampling the passage times. Our algorithm exploits several interesting properties of planar Brownian motion and conformal local martingales. The main contribution of this thesis is the development of a novel multivariate framework for credit risk. We allow for both stochastic trend and volatility in credit qualities, with dependence introduced by letting these quantities be driven by systematic factors common to all obligors. Exploiting a conditional independence structure we are able to express the proportion of defaults in an asymptotically large portfolio as a path functional of the systematic factors. The functional in question returns crossing probabilities of time-changed Brownian motion to continuous barriers, and is typically not available in closed form. As such the distribution of portfolio losses is in general analytically intractable. As such we devise a scheme for simulating approximate losses and demonstrate almost sure convergence of this approximation. We show that the model calibrates well, across both tranches and maturities, to market quotes for CDX index tranches. In particular we are able to calibrate to data from 2006, as well as more recent ``distressed" data from 2008.
6

Geodesics of Random Riemannian Metrics

LaGatta, Tom January 2010 (has links)
We introduce Riemannian First-Passage Percolation (Riemannian FPP) as a new model of random differential geometry, by considering a random, smooth Riemannian metric on R^d . We are motivated in our study by the random geometry of first-passage percolation (FPP), a lattice model which was developed to model fluid flow through porous media. By adapting techniques from standard FPP, we prove a shape theorem for our model, which says that large balls under this metric converge to a deterministic shape under rescaling. As a consequence, we show that smooth random Riemannian metrics are geodesically complete with probability one.In differential geometry, geodesics are curves which locally minimize length. They need not do so globally: consider great circles on a sphere. For lattice models of FPP, there are many open questions related to minimizing geodesics; similarly, it is interesting from a geometric perspective when geodesics are globally minimizing. In the present study, we show that for any fixed starting direction v, the geodesic starting from the origin in the direction v is not minimizing with probability one. This is a new result which uses the infinitesimal structure of the continuum, and for which there is no equivalent in discrete lattice models of FPP.
7

A New Approach to the Computation of First Passage Time Distribution for Brownian Motion

Jin, Zhiyong 20 August 2014 (has links)
This thesis consists of two novel contributions to the computation of first passage time distribution for Brownian motion. First, we extend the known formula for boundary crossing probabilities for Brownian motion to the discontinuous piecewise linear boundary. Second, we derive explicit formula for the first passage time density of Brownian motion crossing piecewise linear boundary. Further, we demonstrate how to approximate the boundary crossing probabilities and density for general nonlinear boundaries. Moreover, we use Monte Carlo simulation method and develop algorithms for the numerical computation. This method allows one to assess the accuracy of the numerical approximation. Our approach can be further extended to compute two-sided boundary crossing probabilities.
8

Beyond Classical Nucleation Theory: A 2-D Lattice-Gas Automata Model

Hickey, Joseph January 2012 (has links)
Nucleation is the first step in the formation of a new phase in a thermodynamic system. The Classical Nucleation Theory (CNT) is the traditional theory used to describe this phenomenon. The object of this thesis is to investigate nucleation beyond one of the most significant limitations of the CNT: the assumption that the surface tension of a nucleating cluster of the new phase is independent of the cluster’s size and has the same value that it would have in the bulk of the new phase. In order to accomplish this, we consider a microscopic, two-dimensional Lattice Gas Automata (LGA) model of precipitate nucleation in a supersaturated system, with model input parameters Ess (solid particle-to-solid particle bonding energy), Esw (solid particle-to-water particle bonding energy), η (next-to-nearest neighbour bonding coeffiicent in solid phase), and Cin (initial solute concentration). The LGA method was chosen for its advantages of easy implementation, low memory requirements, and fast computation speed. Analytical results for the system’s concentration and the crystal radius as functions of time are derived and the former is fit to the simulation data in order to determine the system’s equilibrium concentration. A mean first-passage time (MFPT) technique is used to obtain the nucleation rate and critical nucleus size from the simulation data. The nucleation rate and supersaturation are evaluated using a modification to the CNT that incorporates a two-dimensional, radius-dependent surface tension term. The Tolman parameter, δ, which controls the radius-dependence of the surface tension, decreases (increases) as a function of the magnitude of Ess (Esw), at fixed values of η and Esw (Ess). On the other hand, δ increases as η increases while Ess and Esw are held constant. The constant surface tension term of the CNT, Σ0, increases (decreases) with increasing magnitudes of Ess (Esw) fixed values of Esw (Ess), and increases as η is increased. Together, these results indicate an increase in the radius-dependent surface tension, Σ, with respect to increasing magnitude of Ess relative to the magnitude of Esw. Σ0 increases linearly as a function of the change in energy during an attachment or detachment reaction, |ΔE|, however with a slope less than that predicted for a crystal that is uniformly packed at maximum density.
9

Modeling of nucleation-based stochastic processes in cellular systems

Xu, Xiaohua 16 September 2010 (has links)
Molecular cell biology has been an intensively studied interdisciplinary field with the rapid development of experimental techniques and fast upgrade of computational hardware and numerical tools. Recent technological developments have led to single-cell experiments which allow us to probe the role of stochasticity in cellular processes. Stochastic modeling of the corresponding processes is thus an essential ingredient for the understanding and interpretation of cellular systems of interest. In this thesis, we explore several nucleation-based stochastic cellular processes, i.e. Min protein oscillation in Escherichia coli, pausing phenomena in DNA transcription, and single-molecule enzyme kinetics. We focus on the key experimental results and build up stochastic models accordingly to provide quantitative insights to the underlying physical mechanisms for the corresponding biological processes. We utilize specific mathematical methods and computational algorithms to gain a better understanding and make predictions for further experimental explorations in the relevant fields. / Ph. D.
10

Continuum diffusion on networks

Christophe Haynes Unknown Date (has links)
In this thesis we develop and use a continuum random walk framework to solve problems that are usually studied using a discrete random walk on a discrete lattice. Problems studied include; the time it takes for a random walker to be absorbed at a trap on a fractal lattice, the calculation of the spectral dimension for several different classes of networks, the calculation of the density of states for a multi-layered Bethe lattice and the relationship between diffusion exponents and a resistivity exponent that occur in relevant power laws. The majority of the results are obtained by deriving an expression for a Laplace transformed Green’s function or first passage time, and then using Tauberian theorems to find the relevant asymptotic behaviour. The continuum framework is established by studying the diffusion equation on a 1-d bar with non-homogeneous boundary conditions. The result is extended to model diffusion on networks through linear algebra. We derive the transformation linking the Green’s functions and first passage time results in the continuum and discrete settings. The continuum method is used in conjunction with renormalization techniques to calculate the time taken for a random walker to be absorbed at a trap on a fractal lattice and also to find the spectral dimension of new classes of networks. Although these networks can be embedded in the d- dimensional Euclidean plane, they do not have a spectral dimension equal to twice the ratio of the fractal dimension and the random walk dimension when the random walk on the network is transient. The networks therefore violate the Alexander-Orbach law. The fractal Einstein relationship (a relationship relating a diffusion exponent to a resistivity exponent) also does not hold on these networks. Through a suitable scaling argument, we derive a generalised fractal Einstein relationship which holds for our lattices and explains anomalous results concerning transport on diffusion limited aggregates and Eden trees.

Page generated in 0.0619 seconds