• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterising continuous optimisation problems for particle swarm optimisation performance prediction

Malan, Katherine Mary January 2014 (has links)
Real-world optimisation problems are often very complex. Population-based metaheuristics, such as evolutionary algorithms and particle swarm optimisation (PSO) algorithms, have been successful in solving many of these problems, but it is well known that they sometimes fail. Over the last few decades the focus of research in the field has been largely on the algorithmic side with relatively little attention being paid to the study of the problems. Questions such as ‘Which algorithm will most accurately solve my problem?’ or ‘Which algorithm will most quickly produce a reasonable answer to my problem?’ remain unanswered. This thesis contributes to the understanding of optimisation problems and what makes them hard for algorithms, in particular PSO algorithms. Fitness landscape analysis techniques are developed to characterise continuous optimisation problems and it is shown that this characterisation can be used to predict PSO failure. An essential feature of this approach is that multiple problem characteristics are analysed together, moving away from the idea of a single measure of problem hardness. The resulting prediction models not only lead to a better understanding of the algorithms themselves, but also takes the field a step closer towards the goal of informed decision-making where the most appropriate algorithm is chosen to solve any new complex problem. / Thesis (PhD)--University of Pretoria, 2014. / Computer Science / unrestricted
2

Problem dependent metaheuristic performance in Bayesian network structure learning

Wu, Yanghui January 2012 (has links)
Bayesian network (BN) structure learning from data has been an active research area in the machine learning field in recent decades. Much of the research has considered BN structure learning as an optimization problem. However, the finding of optimal BN from data is NP-hard. This fact has driven the use of heuristic algorithms for solving this kind of problem. Amajor recent focus in BN structure learning is on search and score algorithms. In these algorithms, a scoring function is introduced and a heuristic search algorithm is used to evaluate each network with respect to the training data. The optimal network is produced according to the best score evaluated. This thesis investigates a range of search and score algorithms to understand the relationship between technique performance and structure features of the problems. The main contributions of this thesis include (a) Two novel Ant Colony Optimization based search and score algorithms for BN structure learning; (b) Node juxtaposition distribution for studying the relationship between the best node ordering and the optimal BN structure; (c) Fitness landscape analysis for investigating the di erent performances of both chain score function and the CH score function; (d) A classifier method is constructed by utilizing receiver operating characteristic curve with the results on fitness landscape analysis; and finally (e) a selective o -line hyperheuristic algorithm is built for unseen BN structure learning with search and score algorithms. In this thesis, we also construct a new algorithm for producing BN benchmark structures and apply our novel approaches to a range of benchmark problems and real world problem.

Page generated in 0.0969 seconds