• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 6
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 26
  • 26
  • 19
  • 7
  • 7
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Computation of stratified flow past three dimensional surface mounted obstacles

薛明輝, Sit, Ming-fai. January 1988 (has links)
published_or_final_version / Mechanical Engineering / Master / Master of Philosophy
2

Traffic flow modeling in highway networks /

Yu, Tungsheng, January 1992 (has links)
Report (M.S.)--Virginia Polytechnic Institute and State University. M.S. 1992. / Vita. Abstract. Includes bibliographical references (leaves 60-64). Also available via the Internet.
3

Use of pore-scale network to model three-phase flow in a bedded unsaturated zone

Zhang, Wenqian 17 July 1995 (has links)
Contamination of ground water by non-aqueous phase liquids (NAPLs) has received increasing attention. The most common approach to numerical modeling of NAPL movement through the unsaturated zone is the use of the finite difference or finite element methods to solve a set of partial differential equations derived from Darcy's law and the continuity equations (Abriola and Pinder, 1985; Kaluarachchi and Parker, 1989). These methods work well in many settings, but have given little insights as to why certain non-ideal flow phenomena will occur. The network modeling method, which considers flow at the pore-scale, was used in this study to better understand macroscopic flow phenomena in porous media. Pore-scale network models approximate porous medium as a connected network of pores and channels. Two and three-dimensional pore-scale network models were constructed in this study. A uniform statistical distribution was assumed to represent the random arrangement of pore and tube sizes. Both hysteristic scanning curves and intermediate fluid distribution are studied. The simulation results suggested that network models may be used to predict the characteristic curves of three-phase systems. The results also suggested that three-dimensional models are necessary to study the three-phase problems. Two-dimensional models do not provide realistic results as evidenced by their inability to provide scale-invariant representation of flow processes. The network sizes used in this study ranged from 10 x 5 (50) to 156 x 78 (12168) pores for two-dimensional and from 10 x 5 x 5 (250) to 100 x 50 x 5 (25000) pores for three-dimensional domains. The domain size of 100 x 50 x 5 pores was large enough to provide descriptions independent of the domain scale. The one important limitation of network models is the considerable computational requirements. The use of very high speed computers is essential. Except for this limitation, the network model provides an invaluable technique to study fluid transport mechanisms in the vadose zone. / Graduation date: 1996
4

Modelling meteorological and substrate influences on peatland hydraulic gradient reversals

Colautti, Dennis. January 2001 (has links)
A hydrological modelling effort using MODFLOW was undertaken in order to determine the relative importance of some of the factors influencing hydraulic gradient reversals in peatlands. Model domains were of two types, large raised bog type (LRBT) and kettle bog type (KBT), and were made to undergo various levels of meteorological forcing (water deficit). Substrate, too, was varied in order to determine its importance on reversals. Domain-wide reversals were successfully simulated in LRBT systems, but not in KBT systems. Although simulated flow patterns matched field-observed patterns, both pre- and post-drought, simulated reversals occurred more quickly than in the field. This may be due to insufficiently distributed parameters, such as hydraulic conductivity. Reversals were easily terminated by simulating non-drought conditions. In the LRBT system, reversal duration decreased, and time-to-reversal increased, with a decrease in drought severity. Increasing drought severity in KBT systems had the opposite effect on the duration of semi-reversed flow patterns, suggesting a possibly different/additional mechanism for flow reversals in KBT systems. Hydraulic conductivity had an appreciable effect on flow reversal evolution, though neither changing porosity, nor differences in catotelm layering had a great effect.
5

Computational analysis and optimisation of the inlet system of a high-performance rally engine

Makgata, Katlego Webster. January 2005 (has links)
Thesis (M. Eng.)(Mechanical)--University of Pretoria, 2005. / Title from opening screen (viewed Mar. 20, 2006). Includes summary. Mode of access: World Wide Web.
6

Modelling meteorological and substrate influences on peatland hydraulic gradient reversals

Colautti, Dennis. January 2001 (has links)
No description available.
7

Simulation of the transient behavior of stratified air conditioning systems

Leard, Alan Thomas, 1958- January 2011 (has links)
Vita. / Digitized by Kansas Correctional Industries
8

Infrastructure to model complex systems: hydrological modeling

Unknown Date (has links)
This research proposes an Infrastructure to model complex systems for hydrological modeling. Currently, the three main hydrological packages are: i) SEAWAT (modeling groundwater flow); ii) HECRAS (modeling surface water flow); iii) HEC-HMS (modeling atmospheric water flow). Each of these models is self-contained and has a different timescale and simulation speed. Consequently, any integrated model will only run as fast as the slowest of the models. This makes it difficult to provide reliable and dynamic information on water levels and water availability for a given geographical region in a timely manner. The goal of this research is to facilitate the integration of multiple hydrological models from different hydrological packages by applying Electronic Design Automation (EDA) methodologies, including System Level Design (SLD) methodology, SystemC-AMS language, Python language and libraries (numpy, Statsmodels, and ctypes). The EDA methodology brings in the additional advantage of significantly improved simulation speed. The Infrastructure to Model Complex Systems applications is demonstrated using the following SEAWAT benchmark problems: i) Case 1; ii) Henry; iii) Elder problem. Simulation results from the aforementioned benchmarks are analyzed and discussed. Lastly, future research work is presented. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2014. / FAU Electronic Theses and Dissertations Collection
9

Numerical simulation of blood flow in the systemic vasculature incorporating gravitational force with application to the cerebral circulation

Alirezaye-Davatgar, Mohammad Taghi, Graduate School of Biomedical Engineering, Faculty of Engineering, UNSW January 2006 (has links)
Background. Extensive studies have been conducted to simulate blood flow in the human vasculature using nonlinear equations of pulsatile flow in collapsible tube plus a network of vessels to represent the whole vasculature and the cerebral circulation. For non-linear models numerical solutions are obtained for the fluid flow equations. Methods. Equations of fluid motion in collapsible tubes were developed in the presence of gravitational force (Gforce). The Lax-Wendroff and MacCormack methods were used to solve the governing equations and compared both in terms of accuracy, convergence, and computer processing (CPU) time. A modified vasculature of the whole body and the cerebral circulation was developed to obtain a realistic simulation of blood flow under different conditions. The whole body vasculature was used to validate the simulation in terms of input impedance and wave transmission. The cerebral vasculature was used to simulate conditions such as presence of G-force, blockage of Internal Carotid Artery (ICA), and the effects on cerebral blood flow of changes in mean and pulse pressure. Results. The simulation results for zero G-force were in very good agreement with published experimental data as was the simulation of cerebral blood flow. Both numerical methods for solutions of governing equations gave similar results for blood flow simulations but differed in calculation performance and stability depending on levels of G-force. Simulation results for uniform and sinusoidal G-force are also in good agreement with published experimental results, Blood flow was simulated in the presence of a single (left) carotid artery obstruction with varying morphological structures of the Circle of Willis (CoW). This simulation showed significant differences in contralateral blood flow in the presence or absence of communicating arteries in the CoW. It also was able to simulate the decreases in blood flow in the cerebral circulation compartment corresponding to the visual cortex in the presence of G-force. This is consistent with the known loss of vision under increased acceleration. Conclusions. This study has shown that under conditions of gravitational forces physiological changes in blood flow in the systemic and cerebral vasculature can be simulated realistically by solving the one-dimentional fluid flow equations and non-linear vascular properties numerically. The simulation was able to predict changes in blood flow with different configurations and properties of the vascular network.
10

Development and validation of a flexible, open architecture, transportation simulation with an adaptive traffic signal control implementation

Hunter, Michael P. 28 August 2008 (has links)
Not available / text

Page generated in 0.0673 seconds