Spelling suggestions: "subject:"fluides"" "subject:"luides""
1 |
Mélange gravitationnel de fluides en géométrie confinéeHallez, Yannick Magnaudet, Jacques. January 2008 (has links)
Reproduction de : Thèse de doctorat : Dynamique des fluides : Toulouse, INPT : 2007. / Titre provenant de l'écran-titre. Bibliogr. 82 réf.
|
2 |
Joint numerical and experimental study of thermoacoustic instabilitiesBrebion, Maxence 27 January 2017 (has links) (PDF)
From small scale energy systems such as domestic boilers up to rocket motors, combustion chambers are often prone to combustion instabilities. These instabilities stem from the coupling of unsteady heat release rate and acoustic waves. This coupling is two sided: flame front perturbations generate acoustic waves while acoustic waves impinging on flame holders can disturb flames attached on them. Important pressure and velocity oscillations can be reached during unstable regimes, that can alter its efficiency or even damage the entire combustion chamber. One major challenge is to understand, predict, and prevent from these combustion instabilities. The objectives of this thesis are twofold: (1) take into account acoustic dissipation and (2)analyze flame/acoustic coupling to obtain Reduced Order Model (ROM) for combustion instabilities. This work is divided into three parts. First, the concept of ROM that gives the acoustic modes of a combustion chamber is introduced. This modeling strategy is based on the acoustic network theory and may take into account flame/acoustic coupling as well as acoustic dissipation. An efficient numerical algorithm dedicated to solve ROMs was designed on purpose and validated on several academical configurations. Second, an experimental rig was commissioned to study mean and acoustic pressure losses across a diaphragm and two swirl injectors. Results show that these two phenomena are linked and can be simply incorporated into ROMs. Finally, flame/acoustic coupling is investigated by using both direct numerical simulations and experiments: a lean premixed V-shaped laminar flame is anchored on a cylindrical bluff-body and we show that its temperature greatly influences the flame mean shape as well as its dynamics.
|
3 |
Éléments finis discontinus multi-domaines en temps pour la modélisation du transport en milieu poreux saturéEl Soueidy, Charbel-Pierre Younes, Anis January 2009 (has links) (PDF)
Thèse de doctorat : Mécanique des fluides : Strasbourg 1 : 2008. / Titre provenant de l'écran-titre. Bibliogr. 11 p.
|
4 |
Étude sur le mouvement permanent des fluidesSalvert, Marie Adolphe François de January 2009 (has links)
Reproduction de : Thèse de doctorat : Mathématiques : Faculté des sciences de Paris : 1874. / Titre provenant de la page de titre du document numérisé.
|
5 |
Flow in the vicinity of a moving contact line : theoretical and numerical investigationsFebres Soria, Mijail 29 November 2017 (has links) (PDF)
The exact mechanism with which a fluid interface interacts dynamically with a solid surface during wetting is still open to research. Among the many subjects addressed in this field in the literature, the "moving contact line problem" is one that has been ubiquitous since at least the 1970s, where a paradox in the description of the contact line was found to exist. The paradox in a few words is the next: macroscopic hydrodynamic models using the no-slip boundary condition will predict infinite shear stress close to the contact line. The most promising studies to tackle the problem come from information provided by molecular dynamics simulations. They have confirmed that close to the contact line, the no-slip boundary condition is relaxed to some form of slip. Unfortunately, molecular simulations are still limited to very small scales in space and time, so hydrodynamic models and numerical simulations based on Navier-Stokes equations are still needed. In these simulations, the Continuum Surface Force model CSF for the calculation of the capillary contribution introduces a grid dependent contact line velocity and shear at the wall, which is a problem we proposed to solve here. In this work, we analyze the flow close to the moving contact line in the context of corner stokes-flow and explore the effects of the boundary conditions at the wall. One of these conditions offered in the literature, provides relief to the shear divergence and also opens the possibility to observe Moffatt vortices in the vicinity of the contact line, not yet seen in experiments or numerical simulations. We explore this possibility analytically and then numerically using the code JADIM. The latter task is constrained by the contamination of the velocity field by the so-called spurious velocities if the VOF method is used. To solved this inconvenient, a very promising version of the front-tracking method with lagrangian markers is implemented and enhanced to handle non-uniform distribution of markers without losing its spurious velocities elimination features. Numerical tests are conducted to validate the implementation, spurious velocities are reduce close to machine precision and comparison to benchmark data is performed obtaining good agreement. Tests including contact lines are then compared with exact solutions for shape analyzing the effect of the Bond number, showing remarkable results. Numerical experiments with this implementation close to a contact line show the existence of vortical patterns during of spreading. Finally, and based on the theoretical background developed in this work, a new sub-grid model method is proposed for macroscopic numerical simulations and implemented in the new front-tracking method of JADIM. Quantitative data is obtained and compared to numerical and experimental spreading cases revealing improvement of grid convergence and excellent agreement.
|
6 |
Accounting for complex flow-acoustic interactions in a 3D thermo-acoustic Helmholtz solverNi, Franchine 24 April 2017 (has links) (PDF)
Environmental concerns have motivated turbine engine manufacturers to create new combustor designs with reduced fuel consumption and pollutant emissions. These designs are however more sensitive to a mechanism known as combustion instabilities, a coupling between flame and acoustics that can generate dangerous levels of heat release and pressure fluctuations. Combustion instabilities can be predicted at an attractive cost by Helmholtz solvers. These solvers describe the acoustic behavior of an inviscid fluid at rest with a thermoacoustic Helmholtz equation, that can be solved in the frequency domain as an eigenvalue problem. The flame/acoustics coupling is modeled, often with a first order transfer function relating heat release fluctuations to the acoustic velocity at a reference point. One limitation of Helmholtz solvers is that they cannot account for the interaction between acoustics and vorticity at sharp edges. Indeed, this interaction relies on viscous processes at the tip of the edge and is suspected to play a strong damping role in a combustor. Neglecting it results in overly pessimistic stability predictions but can also affect the spatial structure of the unstable modes. In this thesis, a methodology was developed to include the effect of complex flow-acoustic interactions into a Helmholtz solver. It takes advantage of the compactness of these interactions and models them as 2-port matrices, introduced in the Helmholtz solver as a pair of coupled boundary conditions: the Matrix Boundary Conditions. This methodology correctly predicts the frequencies and mode shapes of a nonreactive academic configuration with either an orifice or a swirler, two elements where flowacoustic interactions are important. For industrial combustors, the matrix methodology must be extended for two reasons. First, industrial geometries are complex, and the Matrix Boundary Conditions must be applied to non-plane surfaces. This limitation is overcome thanks to an adjustment procedure. The matrix data on non-plane surfaces is obtained from the well-defined data on plane surfaces, by applying non-dissipative transformations determined either analytically or from an acoustics propagation solver. Second, the reference point of the flame/acoustics model is often chosen inside the injector and a new reference location must be defined if the injector is removed and replaced by its equivalent matrix. In this work, the reference point is replaced by a reference surface, chosen as the upstream matrix surface of the injector. The extended matrix methodology is successfully validated on academic configurations. It is then applied to study the stability of an annular combustor from Safran. Compared to standard Helmholtz computations, it is found that complex flow-acoustic features at dilution holes and injectors play an important role on the combustor stability and mode shapes. First encouraging results are obtained with surfacebased flame models.
|
7 |
Robustesse et précision des schémas décentrés pour les écoulements compressiblesGressier, Jérémie 26 November 1999 (has links) (PDF)
L'étude des schémas numériques pour les équations d'Euler compressibles est un préalable à la simulation d'écoulements visqueux par les équations de Navier-Stokes. Elle a été décomposée en trois étapes : l'étude des schémas existants, leurs fondements, qualités et défauts ; l'analyse de la propriété convoitée de positivité ; et l'étude de phénomènes encore mystérieux, consiférés comme pathologiques et nommé carbuncle. Dans la première partie, un regard critique mais constructif est porté sur la plupart de schémas décentrés : les schémas FVS, FDS, les méthodes intégrales ou hybrides. Des variantes sont proposées dans le but d'améliorer vees méthodes. Dans la seconde partie, une caractérisation théorique de la robustesse est détaillée, en particulier dans le cadre des schémas FVS : la positivité. Une condition nécessaire et suffisante est exhibée. Elle permet de démontrer la positivité des schémas de Steger et Warming et de deux formulations du schéma de van Leer. De plus, l'incompatibilité de cette propriété avec la résolution exacte des discontinuités de contact est démontrée pour les schémas FVS. Après une description du phénomène du carbuncle, la troisième partie est consacrée à une étude approfondie du comportement des schméas. Enfin, une analyse précise du caractère instable du phénomène sera fournie et comparée avec les résultats théoriques récents de Robinet (1999).
|
8 |
Modélisation par une approche à deux fluides des écoulements gaz liquide à contre-courant dans les colonnes à garnissagesFourati, Manel 16 November 2012 (has links) (PDF)
Ce travail de thèse rentre dans le cadre du développement de modèles multi‐échelles de simulation de colonne d’absorption gaz‐liquide pour des applications de captage de CO2 en vue d’optimiser leur design. Il est le fruit d’une collaboration entre IFP Énergies nouvelles et l’Institut de Mécanique des Fluides de Toulouse. Les colonnes à garnissages représentent une technologie essentielle aux applications d’absorption gaz‐liquide. Dans les procédés de captage de CO2 aux amines, le solvant liquide s’écoule sur les parois du garnissage, idéalement sous forme de film ruisselant mouillant toute la surface disponible, le gaz, en régime turbulent, venant le cisailler à contre‐courant de manière à promouvoir un transfert de CO2 de la phase gaz vers la phase liquide. Un écoulement le plus homogène possible permet d’avoir les meilleures performances de transfert. Toutefois, l’expérience montre que des maldistributions, notamment de la phase liquide, peuvent apparaître même en cas de bonnes distributions en entrée de colonne. La distribution du liquide est régie par un phénomène de « dispersion » dont l’étude et la modélisation représentent le principal objet de cette thèse. Pour ce faire, ce travail de thèse s’appuie sur des travaux expérimentaux, réalisés sur une installation d’IFPEN à Lyon, et sur des travaux numériques réalisés dans l’équipe Interface de l’IMFT. Le premier axe de l’étude abordé a ainsi consisté en l’acquisition de données originales de distribution de liquide en partant d’une configuration d’alimentation sous forme d’un jet central en tête de colonne et ce pour deux types de garnissages métalliques : un garnissage structuré, le Mellapak 250.X et un garnissage vrac, l’IMTP‐40. La méthode de tomographie gamma a été mise en œuvre afin de mesurer l’atténuation d’un flux photonique par le liquide en mouvement ce qui permet d’établir des cartes de rétention locale de liquide sur une section de colonne. Les profils de rétention résultants ont été ensuite exploités afin de caractériser la dispersion de liquide dans le système pour des régimes d’écoulement allant des plus faibles aux plus fortes interactions gaz‐liquide. Ces résultats ont permis de développer un modèle simple d’advection diffusion faisant appel à un paramètre hydrodynamique clé qui est le « coefficient de dispersion », qui reproduit bien l’étalement du jet de liquide. Dans le cas du garnissage Mellapak 250.X nous avons pu mettre en évidence une dispersion qui est régie essentiellement par la géométrie du milieu. Le cas du garnissage IMTP‐40 montre, lui, que la dispersion s’opère par des mécanismes plus complexes dus à la coexistence de plusieurs modes d’écoulement incluant des filets de liquide et des gouttes avec une forte sensibilité aux débits de liquide et de gaz. Le deuxième axe de l’étude a consisté à proposer et valider un modèle de simulation numérique de l’écoulement gaz‐liquide à contre‐courant permettant de retrouver ces phénomènes de dispersion. Un modèle Euler‐Euler offrant la possibilité de modéliser le système à une macroéchelle associé à une description du garnissage par un milieu poreux équivalent a été retenu. Les bases théoriques du modèle en question ont été investiguées et discutées et les différents termes à modéliser mis en évidence. Nous avons par la suite, en s’appuyant également sur des travaux antérieurs, identifié et discuté les principales propositions de modèles de fermeture du système d’équation de Navier‐stokes dans chacune des phases. Des simulations ont été effectuées sur la base de ce modèle en utilisant le code Fluent pour le cas particulier du garnissage structuré. Des résultats en bon accord avec l’expérience sont obtenus tant en termes de perte de charge que de rétentions locales. Les écarts en termes d’étalement du jet de liquide nous ont permis, pour leur part, de discuter le modèle de dispersion adopté, d’en dégager les limites et de proposer des améliorations à mettre en œuvre pour les travaux postérieurs. Enfin, et de manière indépendante, nous avons proposé une extension du modèle de frottement interfacial proposé par Iliuta et al. (2004) pour des régimes de fortes interactions entre phases permettant de mieux représenter l’écoulement et notamment de reproduire les courbes de perte de charge au‐delà du point de charge.
|
9 |
Instabilités de sillage générées derrière un corps solide, fixe ou mobile dans un fluide visqueuxAuguste, Franck 14 June 2010 (has links) (PDF)
Ce travail porte sur la compréhension des instabilités de sillage générées par des corps solides axisymétriques immergés dans un fluide newtonien incompressible, homogène et monophasique. La forme des objets est principalement cylindrique ; leur hauteur est toujours inférieure à leur diamètre. Des comparaisons sont effectuées avec le cas référent de la sphère solide. Deux contextes sont abordés : le cas fixe et le cas mobile. Le premier cas se penche sur la formation de structures tourbillonnaires en aval d'un obstacle fixe, dû à un écoulement incident uniforme et stationnaire. Le paramètre adimensionnel gouvernant la physique du problème est le nombre de Reynolds basé sur la vitesse incidente, la taille caractéristique de l'objet et la viscosité cinématique du fluide. La gamme balayée du nombre de Reynolds permet l'obtention des écoulements de Stokes jusqu'à la transition vers le chaos. Le second cas place le corps libre de se mouvoir dans un fluide visqueux au repos, sous l'effet de la gravité. Les paramètres pertinents, ici, seront le rapport des masses volumiques, le nombre d'Archimède (ou nombre de Galilée) tenant compte des effets de flottabilité, de la viscosité et des dimensions géométriques propres au corps. Les régimes hydrodynamiques observés correspondent à la même catégorie que ceux précédemment cités pour les corps fixes. L'outil utilisé pour approcher le sujet est la simulation numérique. Le code employé résout les équations de Navier-Stokes 3D instationnaires de manière directe avec, pour la partie dynamique, la résolution couplée des équations de Kirchhoff généralisées. Une étude mathématique, basée sur la théorie des formes normales, est développée pour aider à la cartographie des bifurcations rencontrées, ainsi qu'à la caractérisation des différents modes instationnaires.
|
10 |
Numerical modeling of the dissolution of karstic cavitiesGuo, Jianwei 22 September 2015 (has links) (PDF)
The karstic cavity dissolution problems are often studied from a hierarchical point of view. Based on a discussion of the frequently adopted assumptions, a pore-scale model is first developed for a simple geochemistry scheme. The impact of implementing reactive or thermodynamic equilibrium boundary condition at the dissolving surface is discussed. Such a pore-scale model is subsequently used as a basis for developing models at higher scale levels. The first problem deals with transport from a heterogeneous and rough surface characterized by a mixed boundary condition. The resulting macro-scale model takes the form of an effective surface theory. In the homogenized model developed with the effective surface concept (denote ESCM), the original rough surface is replaced locally by a homogeneous and smooth surface, where effective boundary conditions are prescribed. To develop the concept of effective surface, a multi-domain decomposition approach is applied. In this framework the velocity, pressure and concentration are estimated at the micro-scale with an asymptotic expansion of deviation terms with respect to macro-scale velocity and concentration fields. Closure problems for the deviations are obtained and used to define the effective surface position and the corresponding boundary conditions. The evolution of some effective properties and the impact of surface geometry and some dimensionless numbers are investigated. A comparison between the numerical results obtained with this effective model and those from direct numerical simulations with the original rough surface shows good agreements. In the case corresponding to mass transport in porous media, upscaling is carried out with the method of volume averaging to develop a macro-scale porous medium model (denote PMM), starting from a pore-scale transport problem involving thermodynamic equilibrium or nonlinear reactive boundary conditions. A general expression to describe the macro-scale mass transport is obtained involving several effective parameters which are given by specific closure problems. The impact on the effective parameters of the fluid properties, in terms of pore-scale Péclet number (Pe), and the process chemical properties, in terms of pore-scale Damköhler number (Da) and reaction order (n), is studied for periodic stratified, 2D and 3D unit cells. An example of the application of the macro-scale model is presented with the emphasis on the potential impact of additional, non-traditional effective parameters appearing in the theoretical development on the improvement of the accuracy of the macro-scale model. The above developed PMM is also used as a Diffuse Interface Model (DIM) to describe the evolution of a gypsum cavity formation induced by dissolution. The method is based upon the assumption of a pseudo-component dissolving with a thermodynamic equilibrium boundary condition. A methodology is proposed in order to choose suitable parameters for the DIM model and hence predict the correct dissolution fluxes and surface recession velocity. Additional simulations are performed to check which type of momentum balance equation should be used. Calculations with a variable density and Boussinesq approximation were also performed to evaluate the potential for natural convection. The results showed that the impact of density driven flows were negligible in the cases under investigation. The potential of the methodology is illustrated on two large-scale configurations: one corresponding to a gypsum lens contained within a porous rock layer and the other to an isolated pillar in a flooded gypsum quarry. Geomechanical consequences of the dissolution in terms of mechanical stability is evaluated with the help of a simplified geomechanical model. A final case is also studied in which gypsum is replaced by salt to show the applicability of the proposed methodology to a rapidly dissolving material
|
Page generated in 0.0547 seconds