• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 140
  • 45
  • 26
  • 21
  • 21
  • 21
  • 21
  • 21
  • 21
  • 10
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 286
  • 47
  • 45
  • 39
  • 32
  • 28
  • 26
  • 26
  • 23
  • 21
  • 20
  • 20
  • 20
  • 19
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Bioremediation of ethanol in air using a gas-fluidized bioreactor

Clarke, Kyla 16 September 2008 (has links)
A gas-fluidized bed bioreactor was developed in this research as a new method for treating polluted air. The fluidization characteristics of selected packing materials were investigated. Then, bioremediation was tested using two types of packing in a fluidized bioreactor, as well as in a comparable packed bed. Microorganisms on the particles biodegrade contaminants in the polluted air, which flows up through the bed. At high flowrates, the polluted air fluidizes the particles, while at low velocities the operation is in packed bed mode.<p>Initially, sawdust was selected for use as a packing material. Due to the poor fluidization properties of sawdust, glass spheres were added. A mixture of sawdust and glass spheres remained well mixed during fluidization. In the mixture, interparticle forces increased with increasing moisture in the sawdust, eventually causing defluidization of the bed. In the absence of bioremediation, mass transfer was studied between ethanol-contaminated air and sawdust/glass sphere packing, and found to be higher in the fluidized versus packed mode. In bioremediation experiments, ethanol removal efficiencies were as high as 95% in both operating modes. The maximum elimination capacities (EC) of ethanol were 75 and 225 g m^-3 sawdust h^-1 in the fluidized and packed beds respectively.<p>The packing of the fluidized bed bioreactor was optimized in order to boost bioremediation rates. Experiments showed that peat granules fluidized well in a bubbling regime, likely due to their relatively high density and sphericity. In peat bioremediation trials, the fluidized mode outperformed the packed bed; the maximum ECs were 1520 and 530 g m^-3 peat h^-1, respectively. Removal efficiency in the fluidized mode decreased with velocity, because the size and amount of large bubbles increased.<p>A steady-state model of the fluidized bioreactor was developed. By taking account of bubble properties during fluidization, the model helps to explain how bubble size, microbial properties and bioreactor residence time affect removal efficiency and elimination capacity of the bioreactor.<p>A peat gas-fluidized bioreactor shows promise as an efficient, low-cost technology for air treatment. Particle mixing in the fluidized bed may prevent operating problems associated with the packed bed bioreactor. Fluidized bioreactors are ideal for the treatment of high volume, low concentration air emissions.
162

Study of hydrodynamic behaviour in a conical fluidized bed dryer using pressure fluctuation analysis and X-ray densitometry

Wormsbecker, Michael 25 November 2008 (has links)
Fluidized bed dryers (FBDs) are used in the pharmaceutical industry to remove excess moisture from granule prior to tablet formation. As granule moisture content is reduced from its initial to final state, the velocity required to fully fluidize the granule decreases and the bed voidage decreases. The change in these fluidization properties are attributed to the decrease in the interparticle force load created by a reduction in liquid bridging as moisture is removed. During constant velocity drying, these fluidization properties result in a bubbling fluidization state, which evolves into a bubble coalescing regime as drying proceeds. This behaviour was identifiable using pressure fluctuation time-series analysis techniques.<p> Distributor design studies using dry and wet granule in a conical fluidized bed suggest that the punched plate design limits bubble coalescence when compared to the perforated plate and Dutch weave mesh designs. Furthermore, the Dutch weave results in extensive segregation, which is undesirable from a fluidization perspective. Local drying hydrodynamic measurements using x-ray densitometry found that the punched and perforated plates generate a centralized bubbling core region during drying with a defluidized bed periphery. This fluidized core region grows as drying proceeds until the defluidized region disappears. Under the same operating conditions, a porous plate distributor creates extensive channelling and defluidization across the entire bed cross-section during the constant rate period of drying. These poor fluidization characteristics are a result of the porous plate introducing the gas into the bed as a fine dispersion.<p> Lastly, the hydrodynamics associated with the conical vessel geometry improves the circulation and mixing patterns in fluidized bed dryers. This is especially the case in the entry region of the conical bed where the high inlet gas velocity prevents defluidization around the periphery of the bed. The straight walled geometry of the cylindrical bed resulted in defluidization in this area. As a result, the hydrodynamics associated with bubbling differ significantly between the geometries over the course of drying.
163

Reduced order modeling for transport phenomena based on proper orthogonal decomposition

Yuan, Tao 17 February 2005 (has links)
In this thesis, a reduced order model (ROM) based on the proper orthogonal decomposition (POD) for the transport phenomena in fluidized beds has been developed. The reduced order model is tested first on a gas-only flow. Two different strategies and implementations are described for this case. Next, a ROM for a two-dimensional gas-solids fluidized bed is presented. A ROM is developed for a range of diameters of the solids particles. The reconstructed solution is calculated and compared against the full order solution. The differences between the ROM and the full order solution are smaller than 3.2% if the diameters of the solids particles are in the range of diameters used for POD database generation. Otherwise, the errors increase up to 10% for the cases presented herein. The computational time of the ROM varied between 25% and 33% of the computational time of the full order solution. The computational speed-up depended on the complexity of the transport phenomena, ROM methodology and reconstruction error. In this thesis, we also investigated the accuracy of the reduced order model based on the POD. When analyzing the accuracy, we used two simple sets of governing partial differential equations: a non-homogeneous Burgers' equation and a system of two coupled Burgers' equations.
164

CFD-DEM simulations of two phase flow in fluidised beds

Khawaja, Hassan Abbas January 2013 (has links)
No description available.
165

Comparison between air drying and steam drying in a fluidized bed.

Faber, Ernest F. January 1991 (has links)
No abstract available. / Thesis (Ph.D.)-University of Natal, Durban, 1991.
166

Zonal separation and solids circulation in a draft tube fluidized bed applied to coal gasification.

Rudolph, V. January 1984 (has links)
In this thesis a fluidized bed containing a draft tube has been studied with the aim of developing the apparatus for coal gasification. The process has the capability of producing synthesis quality gas using air for combustion, and of being able to accomodate poor quality coal feeds containing heavy fines loads. These advantages arise from two special features of a draft tube fluidized bed. In the first place, the bed may be operated as two separate and independent reaction zones, one contained within the draft tube and the other in the annulus region surrounding it. As a result, the gasification reactions may be carried out in one compartment and the combustion reactions in the other, allowing the useful gasification products to be taken off separately and undiluted with the combustion flue gases. Secondly, the fluidized material in the bed may be induced to circulate up the draft tube and down the annulus. These circulating solids provide the heat carrier from the combustion to the gasification zones within the bed. Furthermore, circulation of the bed in this way leads to a much longer residence time of fine particles within the bed and results in a high fine coal utilization efficiency. In order to achieve these benefits in practice, it is necessary to separate the gases supplied to and emitted from the draft tube from those of the annulus, but at the same time allowing free movement of solids between these regions. The thesis deals with how this may be accomplished in three parts: Firstly, the principles underlying division of a fluidized bed with a draft tube into discrete reaction zones are formulated, and strategies for achieving zonal separation, based on these arguments, are experimentally tested. As a result a reactor configuration and operating conditions suitable for coal gasification have been empirically identified. Secondly, a model describing the bulk circulation of solid material in the bed is presented, for the draft tube operating in the slugging mode. This model allows the average solids residence time and the particle velocities in the annulus and draft tube to be predicted, provided that slug velocities and spacings are known. The necessary correlations between hydrodynamic behaviour and the system properties are available in the literature for round nosed and wall slugs, but not for square nosed slugs, which appear to be characteristic in the apparatus used here. The third part consequently examines the square nosed slugging regime, and a theory to describe this behaviour, based on interparticle stress analysis, is presented. This regime is identified as having significant advantage over other bubbling modes because of the high dense phase gas flow rates which are sustained, and the resulting improved gas-solid contacting. The three models together mathematically describe the operation of the draft tube fluidized bed, allowing gas partition between the annulus and the draft tube regions as well as solids circulation to be predicted, for different bed configurations and operating conditions. The predictions compare well with experimental results. The last part of the thesis deals with the application of the system to coal gasification on a one ton coal per day pilot plant. A high quality gas, containing up to 80% CO + H2, (balance CO2), has been produced by steam gasification in the draft tube, using air for the combustion reaction in the annulus. The H2/CO ratio can be varied from about 1 to 3, by changing the operating temperature of the reactor. / Thesis (Ph.D.)-University of Natal, Durban, 1984.
167

New Automated Industrial Technologies for Improving Chemical Penetration of Bovine Pieces in the Raw Material Processing and Conditioning Areas of Gelatine Manufacture

Wittich, William John January 2005 (has links)
The production of gelatine at Gelita N.Z. Ltd. is a time consuming process. The time limiting step in the process is the pre-treatment of the collagen tissue of the raw material in a lime/sodium sulfide solution. The liming solution breaks down the collagen in the tissue to gelatine. This is a necessary step prior to the extraction of gelatine from the hide pieces. The current liming process takes nearly 50 days to complete. Methods were investigated to increase the rate of penetration of the chemicals into the bovine hide raw material. An increase in the penetration of the liming solutions would lead to shorter processing times for this step in the process. The methods that were investigated were temperature controlled mixing, fluidization of the hide pieces and the use of ultrasound. Of all the methods tested, the fluidization of the hide pieces gave the best results. The pretreatment time of the hide pieces was reduced 9 days with this technique. Methods were also investigated to monitor the levels of conditioning in the raw material An accurate technique to measure hide conditioning was important to pilot plant trials. This helped determine how well any of the trail methods increased the penetration of chemicals into the hide pieces. The use of an ultraviolet dye proved an effective method of measuring conditioning for all the pilot plant trials. The level of chemical penetration was monitored by assessing the penetration of the UV dye. The penetration of the UV dye could be quantified by using imaging software. A possible method of monitoring conditioning in full-scale production was tested. It was determined that the glycosaminoglycans and soluble collagen released into the liming solution could be accurately measured, and related to the overall conditioning of the raw material.
168

CFD Modeling of Biomass Gasification Using a Circulating Fluidized Bed Reactor

Liu, Hui 29 January 2014 (has links)
Biomass, as a renewable energy resource, can be utilized to generate chemicals, heat, and electricity. Compared with biomass combustion, biomass gasification is more eco-friendly because it generates less amount of green gas (CO2) and other polluting gases (NOx and SO2). This research is focused on biomass gasification using a circulating fluidized bed. In the gasifier, fully fluidized biomass particles react with water vapor and air to generate syngas (CO and H2). A comprehensive model, consisting of three modules, hydrodynamics, mass transfer and energy transfer modules, is built to simulate this process using ANSYS Fluent software and C programming language. In the hydrodynamics module, the k-epsilon turbulence equations are coupled with the fluctuating energy equation to simulate gas-particle interaction in the turbulent flows occurring in the riser. In the mass transfer and energy transfer modules, heat transfer and mass transfer in turbulent flows are simulated to solve for the profiles of temperature and species concentration in the gasifier. The impacts of thermal radiation, water gas shift reaction (WGS), equivalence ratio (ER), and char combustion product distribution coefficient are also investigated to gain deeper understanding of biomass gasification process.
169

Agglomeration of bed particles in low-temperature black liquor gasification /

Woodruff, Mark A., January 2006 (has links) (PDF)
Thesis (M.S.)--Brigham Young University. Dept. of Mechanical Engineering, 2006. / Includes bibliographical references (p. 79-80).
170

Development of a novel monolith froth reactor for three-phase catalytic reactions /

Crynes, Lawrence Lee. January 1993 (has links)
Thesis (Ph.D.)--University of Tulsa, 1993. / Five colored photographs glued in book. Includes bibliographical references.

Page generated in 0.0589 seconds