• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Théorie du pluripotentiel et problèmes d' équidistribution / Pluripotential theory and equidistribution problems

Vu, Duc Viet 13 June 2017 (has links)
Cette thèse porte sur la théorie du pluripotentiel et des problèmes d'équidistribution. Elle consiste en 4 chapitres. Le premier chapitre se consarce à l'étude de la régularité de la solution de l'équation de Monge-Ampère complexe sur une variété kahlérienne compacte X. Plus précisement, à l'aide des outils de la géométrie Cauchy-Riemann, on montre que la dernière équation possède une (unique) solution holdérienne pour une large classe géométrique de mesures de probabilités supportées par des sous-variétés réelles de X. Dans le chapitre 2, on étudie l'intersection des courants positifs fermés de grand bidegré. On y prouve que le produit extérieur de deux courants positifs fermés dont l'un possède un superpotentiel continu est positif fermé. Ceci généralise un résultat classique pour les courants de bidegré (1,1). Les deux chapitres suivants sont des applications de la théorie du pluripotentiel à des problèmes d'équidistribution. Dans le chapitre 3, on donne une vitesse explicite de convergence pour l'équidistribution des points de Fekete dans un compact K de l'espace euclidien à bord lisse par morceaux vers la mesure d'équilibre de K. Ici, les points de Fekete sont des bons points dans le problème d'interpolation d'une fonction continue sur K par des polynômes. Un tel contrôle de vitesse est crucial en pratique qu'on utilise les points de Fekete. La thèse se termine par le chapitre 4 où on prouve un analogue de la loi de Weyl pour les résonances d'un opérateur de Schodinger générique sur l'espace euclidien de dimension impair. Les résonances sont des objets centraux dans l'étude des opérateurs de Schrodinger. Elles jouent un rôle similaire à celui des valeurs propres dans le cadre compact. / This thesis concerns the pluripotential theory and equidistribution problems. It consists of 4 chapters. The first chapter is dedicated to the study of the regularity of the solution of the complexe Monge-Ampère equation on a compact Kahler manifold X. More precisely, using tools from the Cauchy-Riemann geometry, we prove that the last equation possesses a unique Holder continuous solution for a large geometric class of probability measures supported on real submanifolds of X. In the chapter 2, we study the intersecton of positive closed currents of higher bidegree. We prove there that the wedge product of two such currents one of which has a continuous superpotential est closed and positive. This property generalises a classical result for currents of bidegree (1,1). The next two chapters are applications of the pluripotential theory to equidistribution problems. In the chapter 3, we give an explicit speed of convergence for the equidistribution of Fekete's points in a compact subset K of the Euclidean space with piecewise smooth boundary toward the equilibrium measure of K. Here, the Fekete's points are good points for the interpolation problem of continuous functions by polynomials on K. A such control of speed is crucial in practice when ones use Fekete's points. The thesis is ended by the chapter 4 where we prove an analogue of Weyl's law for the resonances of a generic Schrodinger operator on an Euclidean space of odd dimension. The resonances are central objects in the research of Schrodinger operators. They play a similar role to that of eigenvalues in the compact setting.
2

Quelques applications des méthodes effectives en géométrie analytique

POPOVICI, Dan 24 October 2003 (has links) (PDF)
On généralise d'abord le théorème de prolongement $L^2$ d'Ohsawa-Takegoshi-Manivel au cas des jets de sections holomorphes d'un fibré en droites hermitien au-dessus d'une variété kählérienne faiblement pseudoconvexe. On donne ensuite une démonstration simple, en étudiant un courant de type $(1, 1),$ d'un résultat d'Uhlenbeck et Yau qui avait permis d'établir la correspondance de Kobayashi-Hitchin sur les variétés kählériennes compactes. Dans la troisième partie on étudie une conjecture sur l'existence de régularisations des courants quasi-positifs fermés, avec contrôle des masses de Monge-Ampère, qui permettrait d'obtenir une nouvelle caractérisation des variétés de Moishezon généralisant celles de Siu et de Demailly qui répondaient à la conjecture de Grauert-Riemenschneider. On donne une estimation uniforme de la perte de positivité dans le théorème de régularisation des courants de Demailly et on obtient une version effective de la génération globale des faisceaux d'idéaux multiplicateurs sur un ouvert pseudoconvexe de $(\bf C)^n.$
3

Équidistribution des zéros de sections holomorphes aléatoires par rapport à des mesures modérées / Equidistribution of zeros of random holomorphic sections for moderate measures

Shao, Guokuan 24 June 2016 (has links)
Cette thèse étudie les équidistributions de zéros de sections holomorphesaléatoires de fibrés en droites pour les mesures modérées. Elle consiste en deuxparties.Dans la première partie, nous construisons une famille étendue de mesuressingulières modérées sur des espaces projectifs. Ces mesures sont générées pardes fonctions quasi-plurisousharmoniques avec les potentiels höldériens.Le deuxième partie traite une propriété d' équidistribution dans un contextegénéral. Nous établissons un théorème d'équidistribution dans le cas dequelques fibrés en droites gros munis de métriques singulières. Une vitesse deconvergence précise pour l'équidistribution est obtenue. / This thesis investigates the equidistributions of zeros of random holomorphic sections of line bundles for moderate measures. It consists of two parts. In the first part, we construct a large family of singular moderate measures on projective spaces. These measures are generated by quasi-plurisubharmonic functions with Holder potentials.The second part deals with an equidistribution property in general settings. We establish an equidistribution theorem in the case of several big line bundles endowed with singular metrics. A precise convergence speed for the equidistribution is obtained.

Page generated in 0.1178 seconds