• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Landing site reachability and decision making for UAS forced landings

Coombes, Matthew January 2016 (has links)
After a huge amount of success within the military, the benefits of the use of unmanned aerial systems over manned aircraft is obvious. They are becoming cheaper and their functions advancing to such a point that there is now a large drive for their use by civilian operators. However there are a number of significant challenges that are slowing their inevitable integration into the national airspace systems of countries. A large array of emergency situations will need to be dealt with autonomously by contingency management systems to prevent potentially deadly incidences. One such emergency situation that will need autonomous intervention, is the total loss of thrust from engine failure. The complex multi faceted task of landing the stricken aircraft at a potentially unprepared site is called a forced landing. This thesis presents methods to address a number of critical parts of a forced landing system for use by an unmanned aerial system. In order for an emergency landing site to be considered, it needs to be within glide range. In order to find a landing site s reachability from the point of engine failure the aircraft s glide performance and a glide path must be known. A method by which to calculate the glide performance, both from aircraft parameters or experiments is shown. These are based on a number of steady state assumptions to make them generic and quick to compute. Despite the assumptions, these are shown to have reasonable accuracy. A minimum height loss path to the landing site is defined, which takes account of a steady uniform wind. While this path is not the path to be flown it enables a measure of how reachable a landing site is, as any extra height the aircraft has once it gets to the site makes a site more reachable. It is shown that this method is fast enough to be run online and is generic enough for use on a range of aircraft. Based on identified factors that make a landing site more suitable, a multi criteria decision making Bayesian network is developed to decide upon which site a unmanned aircraft should land in. It can handle uncertainty and non-complete information while guaranteeing a fast reasonable decision, which is critical in this time sensitive situation. A high fidelity simulation environment and flight test platform are developed in order to test the performance of the developed algorithms. The test environments developed enable rapid prototyping of algorithms not just within the scope of this thesis, but on a range of vehicle types. In simulation the minimum height loss paths show good accuracy, for two completely different types of aircraft. The decision making algorithms show that they are capable of being ran online in a flight test. They make a reasonable decision and are capable of quickly reacting to changing conditions, enabling redirection to a more suitable landing site.
2

Application of Genetic Algorithm to a Forced Landing Manoeuvre on Transfer of Training Analysis

Tong, Peter, mail@petertong.com January 2007 (has links)
This study raises some issues for training pilots to fly forced landings and examines the impact that these issues may have on the design of simulators for such training. It focuses on flight trajectories that a pilot of a single-engine general aviation aircraft should fly after engine failure and how pilots can be better simulator trained for this forced landing manoeuvre. A sensitivity study on the effects of errors and an investigation on the effect of tolerances in the aerodynamic parameters as prescribed in the Manual of Criteria for the Qualification of Flight Simulators have on the performance of flight simulators used for pilot training was carried out. It uses a simplified analytical model for the Beech Bonanza model E33A aircraft and a vertical atmospheric turbulence based on the MIL-F-8785C specifications. It was found that the effect of the tolerances is highly sensitive on the nature of the manoeuvre flown and that in some cases, negative transfe r of training may be induced by the tolerances. A forced landing trajectory optimisation was carried out using Genetic Algorithm. The forced landing manoeuvre analyses with pre-selected touchdown locations and pre-selected final headings were carried out for an engine failure at 650 ft AGL for bank angles varying from banking left at 45° to banking right at 45°, and with an aircraft's speed varying from 75.6 mph to 208 mph, corresponding to 5% above airplane's stall speed and airplane's maximum speed respectively. The results show that certain pre-selected touchdown locations are more susceptible to horizontal wind. The results for the forced landing manoeuvre with a pre-selected location show minimal distance error while the quality of the results for the forced landing manoeuvre with a pre-selected location and a final heading show that the results depend on the end constraints. For certain pre-selected touchdown locations and final headings, the airplane may either touchdown very close to the pre-selected touchdown location but with greater final h eading error from the pre-selected final heading or touchdown with minimal final heading error from the pre-selected final heading but further away from the pre-selected touchdown location. Analyses for an obstacle avoidance forced landing manoeuvre were also carried out where an obstacle was intentionally placed in the flight path as found by the GA program developed for without obstacle. The methodology developed successfully found flight paths that will avoid the obstacle and touchdown near the pre-selected location. In some cases, there exist more than one ensemble grouping of flight paths. The distance error depends on both the pre-selected touchdown location and where the obstacle was placed. The distance error tends to increase with the addition of a specific final heading requirement for an obstacle avoidance forced landing manoeuvre. As with the case without specific final heading requirement, there is a trade off between touching down nearer to the pre-selected location and touching down with a smaller final heading error.
3

Landing site selection for UAV forced landings using machine vision

Fitzgerald, Daniel Liam January 2007 (has links)
A forced landing for an Unmanned Aerial Vehicle (UAV) is required if there is an emergency on board that requires the aircraft to land immediately. Piloted aircraft in the same scenario have a human on board that is able to engage in the complex decision making process involved in the choice of a suitable landing location. If UAVs are to ever fly routinely in civilian airspace, then it is argued that the problem of finding a safe landing location for a forced landing is an important unresolved problem that must be addressed. This thesis presents the results of an investigation into the feasibility of using machine vision techniques to locate candidate landing sites for an autonomous UAV forced landing. The approach taken involves the segmentation of the image into areas that are large enough and free of obstacles; classification of the surface types of these areas; incorporating slope information from readily available digital terrain databases; and finally fusing these maps together using a high level set of simple linguistic fuzzy rules to create a final candidate landing site map. All techniques were evaluated on actual flight data collected from a Cessna 172 flying in South East Queensland. It was shown that the use of existing segmentation approaches from the literature did not provide the outputs required for this problem in the airborne images encountered in the gathered dataset. A simple method was then developed and tested that provided suitably sized landing areas that were free of obstacles and large enough to land. The advantage of this novel approach was that these areas could be extracted from the image directly without solving the difficult task of segmenting the entire image into the individual homogenous objects. A number of neural network classification approaches were tested with the surface types of candidate landing site regions extracted from the aerial images. A number of novel techniques were developed through experimentation with the classifiers that greatly improved upon the classification accuracy of the standard approaches considered. These novel techniques included: automatic generation of suitable output subclasses based on generic output classes of the classifier; an optimisation process for generating the best set of input features for the classifier based on an automated analysis of the feature space; the use of a multi-stage classification approach; and the generation of confidence measures based on the outputs of the neural network classifiers. The final classification result of the system performs significantly better than a human test pilot's classification interpretation of the dataset samples. In summary, the algorithms were able to locate candidate landing site areas that were free of obstacles 92.3 ±2.6% (99% confidence in the result) of the time, with free obstacle candidate landing site areas that were large enough to land in missed only 5.3 ±2.2% (99% confidence in the result) of the time. The neural network classification networks developed were able to classify the surface type of the candidate landing site areas to an accuracy of 93.9 ±3.7% (99% confidence in the result) for areas labelled as Very Certain. The overall surface type classification accuracy for the system (includes all candidate landing sites) was 91.95 ±4.2% (99% confidence in the result). These results were considered to be an excellent result as a human test pilot subject was only able to classify the same data set to an accuracy of 77.24 %. The thesis concludes that the techniques developed showed considerable promise and could be used immediately to enhance the safety of UAV operations. Recommendations include the testing of algorithms over a wider range of datasets and improvements to the surface type classification approach that incorporates contextual information in the image to further improve the classification accuracy.

Page generated in 0.125 seconds