Spelling suggestions: "subject:"forces mécanique"" "subject:"amorces mécanique""
1 |
Étude du mécanisme de génération de forces mécaniques par les cellules apoptotiques et leur transmission au reste du tissu / Study of the mecanical force generator mecanism within apoptotic cells and their transmission to surrounding tissueAmbrosini, Arnaud 24 September 2018 (has links)
La morphogénèse épithéliale est une caractéristique clé du développement des organismes multicellulaires. Parmi les différents types d'évènement morphogénétique, la capacité à créer des invaginations est cruciale pour la mise en forme des organismes. Un aspect fondamental de la morphogénèse repose sur la capacité des cellules à exercer, échanger et résister aux stress mécaniques pour permettre la mise en forme des tissues. Au cours des décennies passées, l'importance des forces mécaniques générées au niveau des jonctions adhérentes et notamment sur le plan parallèle au plan apical a été largement démontrée. Cependant, le rôle des forces mécaniques générées sur un plan perpendiculaire au plan apical (dans l'axe apico/basal) est loin d'être aussi bien compris. Récemment, l'équipe a montré que les cellules apoptotique au sein de l'épithélium de patte de drosophile sont capables de générer une force apico/basale qui est requise pour la formation des plis distaux, préfigurant les articulations de la future patte. Même si le rôle d'une structure verticale d'acto-myosine (nommée câble) dans la génération de cette force, a été clairement démontré, rien n'est connu à propos de sa régulation ou du point d'ancrage que ce câble d'acto-myosine pourrait utiliser pour générer cette force. De plus, seuls les effets apicaux de cette force ont été étudiés. Mes travaux de thèses se sont articulés autour de deux objectifs principaux : (1) Déchiffrer les mécanismes intracellulaires requis pour le processus de génération de force apico-basal via le câble, en étudiant en parallèle les effets de la génération de force sur le processus apoptotique lui-même. (2) Etudier les conséquences de l'application de cette force mécanique sur le pôle basal de l'épithélium. Au cours de ma thèse, j'ai montré que pour exercer une force apico-basale, les cellules apoptotiques créent une structure apico-basale comprenant, de l'apical vers le basal : les jonctions adhérentes, un câble d'acto-myosine, le noyau et les jonctions basales.[...] / Epithelium morphogenesis is a key feature during the development of multicellular organism. Within morphogenetic events, the ability to create a fold is crucial to shape multicellular organism. A fundamental aspect of morphogenesis lies on the ability of cells to exert, exchange and resist mechanical stress in order to shape the tissue. During the past decades, the importance of mechanical force generated at the level of adherent junctions, parallel to the apical plan has been greatly elucidated. However, the role of mechanical forces generated perpendicular to the apical plan (in the apico/basal axe) is far from being understood. Recently, the team demonstrated that apoptotic cells in the leg disc epithelium of the drosophila, are able to generate an apico/basal force that is required for the fold formation that foreshadows the future articulation of the adult leg. Even if the role of acto-myosin structure in the generation of this force has been demonstrated, nothing is known about other regulators or even anchoring points that could help this structure in generating this force. Moreover, the effects of this force have only been observed for the apical side of the epithelium. My Phd aims at two goals: (1) Deciphering the intracellular structure that are required for this force generation process and the possible effect of force generation for the apoptotic process per se.(2) Analysing the consequences of those forces on the basal side of the epithelium. During my Phd, I have shown that in order to exert an apico/basal force, the apoptotic cell needs to generate an apico/basal structure comprising from the apical to the basal: adherent junctions, acto-myosin cable, nucleus and basal adhesions. More precisely, I observed that acto-myosin structures called "cables" that have been implicated in the force generation process, spawn from the adherent junctions and grows progressively until reaching the nucleus of the cell. I observed that apoptotic cells have a basally localised nucleus. Following that, I observed that nucleus is anchored by a basal actin meshwork, that restraints apoptotic nucleus movements. What is more, I observed that apoptotic cells maintain basal cell/matrix adhesions. [...]
|
2 |
Élongation du fuseau mitotique dans l'Embryon de C. elegans : caractérisation d'une Nouvelle Force de propulsion / Spindle elongation in C. elegans embryos : characterization of a new pushing forceNahaboo, Wallis 24 March 2016 (has links)
A la fin de la vie d’une cellule, différentes forces mécaniques permettent la séparation des chromosomes. Nos données préliminaires suggèrent l’existence d’un autre mécanisme provenant du centre du fuseau mitotique, non décrit dans l’embryon une cellule de C. elegans qui permettrait la séparation des chromosomes. Dans cette cellule, les microtubules kinétochoriens n’appliquent aucune force mécaniques sur les chromosomes durant l’anaphase. Il a été décrit que les chromosomes sont séparés grâce au déplacement des centrosomes via les forces de traction corticales. A l’aide de la microchirurgie laser dans les embryons une cellule de C. elegans, j’ai montré qu’en détruisant physiquement un ou deux centrosomes, les chromosomes continuent de se séparer, révélant l’existence d’une force de propulsion interne au fuseau mitotique (Nahaboo et al., 2015). En combinant la destruction de centrosomes et l’inactivation génétique, nous avons caractérisé les rôles de gènes favorisant ou freinant cette force de propulsion. J’ai observé que la kinésine-5, BMK-1, et le crosslinker MAP-65/SPD-1 freinent cette force de propulsion. Alors que dans d’autres espèces ces protéines favorisent la séparation des chromosomes. Nous avons remarqué que les protéines RanGTP et CLASP, favorisant de la nucléation et la polymérisation des microtubules, aident cette force de propulsion. Ces propriétés suggèrent que la polymérisation des microtubules au centre du fuseau est requise pour permettre la séparation des chromosomes durant la mitose.Par manque d’outils adéquats afin d’altérer la dynamique des microtubules, nous avons collaboré avec l’équipe de biochimistes du Dr. D. Trauner à Munich en Allemagne. Ils ont synthétisé la molécule photoactivable, Photostatin (PST), permettant la dépolymérisation des microtubules en quelques secondes (Borowiak et al., 2015). Entre 390 - 430 nm, PST est activé, dépolymérisant les microtubules, alors qu’entre 500 – 530 nm, PST est inactivé, permettant la polymérisation normale des microtubules. J’ai mesuré que la croissance des microtubules avec PST actif est absente dans des cellules Hela. J’ai montré que le cycle cellulaire dans l’embryon de C. elegans est arrêté localement en présence de PST actif. Nous avons alors montré que PST contrôle optiquement la dynamique des microtubules, in vitro, in cellulo et in vivo, de manière non invasive, rapide, locale et réversible. En résume, j’ai identifié une nouvelle force permettant la séparation des chromosomes à l’aide des approches moléculaires et biophysiques, et j’ai aidé à la caractérisation PST, un antimicrotubule photoactivable de manière locale et réversible. / In mitosis, different mechanical forces are involved in chromosome segregation. In C. elegans one-cell embryos, preliminary data suggest that an unknown mechanism, coming from inside the mitotic spindle, could influence chromosome separation. In those cells, it has been showed that kinetochore microtubule activity is absent. Thanks to external pulling forces, centrosome separation drives chromosome segregation. By using microsurgery inside the one-cell C. elegans embryos, we have shown that destroying one or two centrosomes did not prevent chromosome separation, revealing the existence of an outward pushing force (Nahaboo et al., 2015). By combining gene inactivation and centrosome destruction, we showed that the kinesin-5 and the crosslinker SPD-1 act as a brake on this pushing force, whereas they enhance chromosome segregation in other species. Moreover, we identified a novel role for the two microtubule-growth and nucleation agents, RanGTP and CLASP, in the establishment of the centrosome-independent force during anaphase. Their involvement raises the interesting possibility that microtubule polymerization of midzone microtubules is required to sustain chromosome segregation during mitosis. Then, we aim to reversibility affect microtubule dynamics in the central spindle. Because of the lack of adequate tools, we have collaborated with biochemists from Dr. D. Trauner lab, in Munich, Germany, who are specialized in photoactivable drugs. They have synthetized a photoswitable drug, Photostatin (PST), which can depolymerize microtubules in few seconds in an on/off manner (Borowiak et al., 2015). Under blue light (390 - 430 nm), PST is activated leading to microtubule depolymerization, whereas under green light (500 - 530 nm), PST is activated which does not affect microtubule dynamics. I measured that microtubule growing is absent in presence of activated PST in Hela cells. I also showed that cell cycle can be stopped thank to activated PST in multiple cell C. elegans embryos. We have shown that PST can control microtubule dynamics thanks to visible light in vitro, in cellulo and in vivo, as an on/off switch, in a non-invasive, local and reversible manner.
|
Page generated in 0.0558 seconds