Spelling suggestions: "subject:"forecasting "" "subject:"forecasting's ""
771 |
Freeway Short-Term Traffic Flow Forecasting by Considering Traffic Volatility Dynamics and Missing Data SituationsZhang, Yanru 2011 August 1900 (has links)
Short-term traffic flow forecasting is a critical function in advanced traffic management systems (ATMS) and advanced traveler information systems (ATIS). Accurate forecasting results are useful to indicate future traffic conditions and assist traffic managers in seeking solutions to congestion problems on urban freeways and surface streets. There is new research interest in short-term traffic flow forecasting due to recent developments in ITS technologies. Previous research involves technologies in multiple areas, and a significant number of forecasting methods exist in literature. However, forecasting reliability is not properly addressed in existing studies. Most forecasting methods only focus on the expected value of traffic flow, assuming constant variance when perform forecasting. This method does not consider the volatility nature of traffic flow data. This paper demonstrated that the variance part of traffic flow data is not constant, and dependency exists. A volatility model studies the dependency among the variance part of traffic flow data and provides a prediction range to indicate the reliability of traffic flow forecasting. We proposed an ARIMA-GARCH (Autoregressive Integrated Moving Average- AutoRegressive Conditional Heteroskedasticity) model to study the volatile nature of traffic flow data. Another problem of existing studies is that most methods have limited forecasting abilities when there is missing data in historical or current traffic flow data. We developed a General Regression Neural Network(GRNN) based multivariate forecasting method to deal with this issue. This method uses upstream information to predict traffic flow at the studied site. The study results indicate that the ARIMA-GARCH model outperforms other methods in non-missing data situations, while the GRNN model performs better in missing data situations.
|
772 |
Using scenario planning to identify potential impacts of socio-demographic change on aspects of domestic tourism demand in Queensland in 2021Glover, Petra Sabine Unknown Date (has links)
No description available.
|
773 |
ADVANCED APPROACHES FOR ELECTRICITY MARKET PRICE FORECASTINGXia Chen Unknown Date (has links)
Electricity price forecasting is an important task for electricity market participants since the very beginning of the deregulation. Accurate forecasting is essential for designing bidding strategy, risk management, and market operation. However, due to the compli-cated factors affecting electricity prices, there are more uncertainties in electricity price forecasting and hence more complex than demand forecasting. This makes accurate price forecasting very difficult. In the last decade, several methods have been developed in order to fully capture the peculiarities of electricity price dynamics, from classic econometric time series models, e.g., autoregressive moving average (ARMA) model, generalized autoregressive conditional heteroscedasticity (GARCH) model to modern machine learning based techniques such as artificial neural networks (ANN) and sup-port vector machine (SVM). In spite of all models proposed in the literature, there is still no clear consensus about which model is substantively outperforming others. Therefore, when a single method is used, decision-makers are facing the risk of not choosing the best one. On the other hand, the prediction of electricity market prices still involves large errors. If decision-makers take the prediction result on faith, prediction errors could exposure them to serious financial risks. Based on these findings, it can conclude that (1) systematic methodologies and implementations which can efficiently address model selection uncertainty in price forecasting require an investigation; (2) more powerful and robust price forecasting models are still needed to reduce the fore-cast errors; and (3) In addition, the emphasis of price forecasting should shift away from point forecast to uncertainty around the forecast. Unfortunately, most researches in this area have been devoted to finding the single “best” estimates rather than dealing with the uncertainty in model selection and quantifying the predictive uncertainty. In this thesis the research focus is on: (1) finding methodologies and efficient imple-mentations to deal with the uncertainty in model selection; (2) developing more power-ful machine learning based approaches to model electricity spot prices and further im-proving the accuracy of electricity market price forecast; and (3) incorporating uncer-tainty estimation into the application of price forecasting. The thesis makes three main contributions to the study of this topic. Firstly, it proposes linear, nonlinear forecast combination frameworks to deal with model selection prob-lem; secondly, it introduces two novel models: support vector machine based nonlinear generalized autoregressive conditional heteroscedasticity model (SVM-GARCH) and extreme learning machine (ELM) to the price forecasting and furthermore gives a series of bootstrap-based interval construction procedures to quantify the prediction uncer-tainty. Finally, it proposes a more robust interval forecasting approach which is based on quantile regression to electricity price forecasting literature. The effectiveness and efficiency of the proposed approaches have been tested based on real market data of Australian National Electricity Market (NEM).
|
774 |
Using scenario planning to identify potential impacts of socio-demographic change on aspects of domestic tourism demand in Queensland in 2021Glover, Petra Sabine Unknown Date (has links)
No description available.
|
775 |
Using scenario planning to identify potential impacts of socio-demographic change on aspects of domestic tourism demand in Queensland in 2021Glover, Petra Sabine Unknown Date (has links)
No description available.
|
776 |
Using scenario planning to identify potential impacts of socio-demographic change on aspects of domestic tourism demand in Queensland in 2021Glover, Petra Sabine Unknown Date (has links)
No description available.
|
777 |
Using scenario planning to identify potential impacts of socio-demographic change on aspects of domestic tourism demand in Queensland in 2021Glover, Petra Sabine Unknown Date (has links)
No description available.
|
778 |
Using scenario planning to identify potential impacts of socio-demographic change on aspects of domestic tourism demand in Queensland in 2021Glover, Petra Sabine Unknown Date (has links)
No description available.
|
779 |
Using scenario planning to identify potential impacts of socio-demographic change on aspects of domestic tourism demand in Queensland in 2021Glover, Petra Sabine Unknown Date (has links)
No description available.
|
780 |
ADVANCED APPROACHES FOR ELECTRICITY MARKET PRICE FORECASTINGXia Chen Unknown Date (has links)
Electricity price forecasting is an important task for electricity market participants since the very beginning of the deregulation. Accurate forecasting is essential for designing bidding strategy, risk management, and market operation. However, due to the compli-cated factors affecting electricity prices, there are more uncertainties in electricity price forecasting and hence more complex than demand forecasting. This makes accurate price forecasting very difficult. In the last decade, several methods have been developed in order to fully capture the peculiarities of electricity price dynamics, from classic econometric time series models, e.g., autoregressive moving average (ARMA) model, generalized autoregressive conditional heteroscedasticity (GARCH) model to modern machine learning based techniques such as artificial neural networks (ANN) and sup-port vector machine (SVM). In spite of all models proposed in the literature, there is still no clear consensus about which model is substantively outperforming others. Therefore, when a single method is used, decision-makers are facing the risk of not choosing the best one. On the other hand, the prediction of electricity market prices still involves large errors. If decision-makers take the prediction result on faith, prediction errors could exposure them to serious financial risks. Based on these findings, it can conclude that (1) systematic methodologies and implementations which can efficiently address model selection uncertainty in price forecasting require an investigation; (2) more powerful and robust price forecasting models are still needed to reduce the fore-cast errors; and (3) In addition, the emphasis of price forecasting should shift away from point forecast to uncertainty around the forecast. Unfortunately, most researches in this area have been devoted to finding the single “best” estimates rather than dealing with the uncertainty in model selection and quantifying the predictive uncertainty. In this thesis the research focus is on: (1) finding methodologies and efficient imple-mentations to deal with the uncertainty in model selection; (2) developing more power-ful machine learning based approaches to model electricity spot prices and further im-proving the accuracy of electricity market price forecast; and (3) incorporating uncer-tainty estimation into the application of price forecasting. The thesis makes three main contributions to the study of this topic. Firstly, it proposes linear, nonlinear forecast combination frameworks to deal with model selection prob-lem; secondly, it introduces two novel models: support vector machine based nonlinear generalized autoregressive conditional heteroscedasticity model (SVM-GARCH) and extreme learning machine (ELM) to the price forecasting and furthermore gives a series of bootstrap-based interval construction procedures to quantify the prediction uncer-tainty. Finally, it proposes a more robust interval forecasting approach which is based on quantile regression to electricity price forecasting literature. The effectiveness and efficiency of the proposed approaches have been tested based on real market data of Australian National Electricity Market (NEM).
|
Page generated in 0.0772 seconds