• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1740
  • 414
  • 161
  • 72
  • 54
  • 54
  • 50
  • 50
  • 50
  • 50
  • 50
  • 48
  • 40
  • 37
  • 34
  • Tagged with
  • 3207
  • 437
  • 430
  • 381
  • 364
  • 304
  • 291
  • 264
  • 262
  • 243
  • 231
  • 229
  • 225
  • 216
  • 211
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
831

Combining empirical mode decomposition with neural networks for the prediction of exchange rates / Jacques Mouton

Mouton, Jacques January 2014 (has links)
The foreign exchange market is one of the largest and most active financial markets with enormous daily trading volumes. Exchange rates are influenced by the interactions of a large number of agents, each operating with different intentions and on different time scales. This gives rise to nonlinear and non-stationary behaviour which complicates modelling. This research proposes a neural network based model trained on data filtered with a novel Empirical Mode Decomposition (EMD) filtering method for the forecasting of exchange rates. One minor and two major exchange rates are evaluated in this study. Firstly the ideal prediction horizons for trading are calculated for each of the exchange rates. The data is filtered according to this ideal prediction horizon using the EMD-filter. This EMD-filter dynamically filters the data based on the apparent number of intrinsic modes in the signal that can contribute towards prediction over the selected horizon. The filter is employed to filter out high frequency noise and components that would not contribute to the prediction of the exchange rate at the chosen timescale. This results in a clearer signal that still includes nonlinear behaviour. An artificial neural network predictor is trained on the filtered data using different sampling rates that are compatible with the cut-off frequency. The neural network is able to capture the nonlinear relationships between historic and future filtered data with greater certainty compared to a neural network trained on unfiltered data. Results show that the neural network trained on EMD-filtered data is significantly more accurate at prediction of exchange rates compared to the benchmark models of a neural network trained on unfiltered data and a random walk model for all the exchange rates. The EMD-filtered neural network’s predicted returns for the higher sample rates show higher correlations with the actual returns, and significant profits can be made when applying a trading strategy based on the predictions. Lower sample rates that just marginally satisfy the Nyquist criterion perform comparably with the neural network trained on unfiltered data; this may indicate that some aliasing occurs for these sampling rates as the EMD low-pass filter has a gradual cut-off, leaving some high frequency noise within the signal. The proposed model of the neural network trained on EMD-filtered data was able to uncover systematic relationships between the filtered inputs and actual outputs. The model is able to deliver profitable average monthly returns for most of the tested sampling rates and forecast horizons of the different exchange rates. This provides evidence that systematic predictable behaviour is present within exchange rates, and that this systematic behaviour can be modelled if it is properly separated from high frequency noise. / MIng (Computer and Electronic Engineering), North-West University, Potchefstroom Campus, 2015
832

Modelling and forecasting student enrolment with Box -Jenkins and Holty-Winters methodologies : a case of North West University, Mafikeng Campous / David Selokela Sebolai

Sebolai, David Selokela January 2010 (has links)
Thesis (M.Statistics) North-West University, Mafikeng Campus, 2010
833

Combining empirical mode decomposition with neural networks for the prediction of exchange rates / Jacques Mouton

Mouton, Jacques January 2014 (has links)
The foreign exchange market is one of the largest and most active financial markets with enormous daily trading volumes. Exchange rates are influenced by the interactions of a large number of agents, each operating with different intentions and on different time scales. This gives rise to nonlinear and non-stationary behaviour which complicates modelling. This research proposes a neural network based model trained on data filtered with a novel Empirical Mode Decomposition (EMD) filtering method for the forecasting of exchange rates. One minor and two major exchange rates are evaluated in this study. Firstly the ideal prediction horizons for trading are calculated for each of the exchange rates. The data is filtered according to this ideal prediction horizon using the EMD-filter. This EMD-filter dynamically filters the data based on the apparent number of intrinsic modes in the signal that can contribute towards prediction over the selected horizon. The filter is employed to filter out high frequency noise and components that would not contribute to the prediction of the exchange rate at the chosen timescale. This results in a clearer signal that still includes nonlinear behaviour. An artificial neural network predictor is trained on the filtered data using different sampling rates that are compatible with the cut-off frequency. The neural network is able to capture the nonlinear relationships between historic and future filtered data with greater certainty compared to a neural network trained on unfiltered data. Results show that the neural network trained on EMD-filtered data is significantly more accurate at prediction of exchange rates compared to the benchmark models of a neural network trained on unfiltered data and a random walk model for all the exchange rates. The EMD-filtered neural network’s predicted returns for the higher sample rates show higher correlations with the actual returns, and significant profits can be made when applying a trading strategy based on the predictions. Lower sample rates that just marginally satisfy the Nyquist criterion perform comparably with the neural network trained on unfiltered data; this may indicate that some aliasing occurs for these sampling rates as the EMD low-pass filter has a gradual cut-off, leaving some high frequency noise within the signal. The proposed model of the neural network trained on EMD-filtered data was able to uncover systematic relationships between the filtered inputs and actual outputs. The model is able to deliver profitable average monthly returns for most of the tested sampling rates and forecast horizons of the different exchange rates. This provides evidence that systematic predictable behaviour is present within exchange rates, and that this systematic behaviour can be modelled if it is properly separated from high frequency noise. / MIng (Computer and Electronic Engineering), North-West University, Potchefstroom Campus, 2015
834

The art of forecasting – an analysis of predictive precision of machine learning models

Kalmár, Marcus, Nilsson, Joel January 2016 (has links)
Forecasting is used for decision making and unreliable predictions can instill a false sense of condence. Traditional time series modelling is astatistical art form rather than a science and errors can occur due to lim-itations of human judgment. In minimizing the risk of falsely specifyinga process the practitioner can make use of machine learning models. Inan eort to nd out if there's a benet in using models that require lesshuman judgment, the machine learning models Random Forest and Neural Network have been used to model a VAR(1) time series. In addition,the classical time series models AR(1), AR(2), VAR(1) and VAR(2) havebeen used as comparative foundation. The Random Forest and NeuralNetwork are trained and ultimately the models are used to make pre-dictions evaluated by RMSE. All models yield scattered forecast resultsexcept for the Random Forest that steadily yields comparatively precisepredictions. The study shows that there is denitive benet in using Random Forests to eliminate the risk of falsely specifying a process and do infact provide better results than a correctly specied model.
835

Work related attitudes as predictors of employee absenteeism

Van der Westhuizen, Christelle 31 March 2006 (has links)
No summary available / Industrial & Organisational Psychology / M. Comm. (Industrial Psychology)
836

Application of meteorological satellite products for short term forecasting of convection in Southern Africa

De Coning, Estelle 11 1900 (has links)
Thunderstorms, due to their high frequency of occurrence over southern Africa, and their major contribution to summer rainfall are the primary focus of very short range forecasting and nowcasting efforts in South Africa. With a limited number of surface and upper-air observations and the limited availability of numerical model output most southern African countries are heavily reliant on satellite technology. In developing tools for the first twelve forecast hours the South African Weather Service has to address both the national and regional needs. Thus, the blending of techniques in an optimal manner is essential. This study initially describes how the Global Instability Index product derived from the European Meteosat Second Generation Satellite was adapted for South African circumstances using a different numerical model to provide background information – creating the Regional Instability Indices (RII). The focus of the study is the development of a new convection indicator, called the Combined Instability Index (CII), which calculates the probability of convection from satellite derived instability indices and moisture, as well as height above sea level early in the morning when the sky is relatively cloud free. Early morning CII values were evaluated statistically against the occurrence of lightning over South Africa, where a lightning network is available, as well as against satellite derived precipitation over southern Africa, later in the same day. It is shown that the CII not only performs well, but also outperforms the individual RII when compared to the occurrence of lightning. The CII will be beneficial to operational forecasters to focus their attention on the area which is most favourable for the development of convection later in the day. / Environmental Sciences / Ph. D. (Environmental Sciences)
837

Forecasting annual tax revenue of the South African taxes using time series Holt-Winters and ARIMA/SARIMA Models

Makananisa, Mangalani P. 10 1900 (has links)
This study uses aspects of time series methodology to model and forecast major taxes such as Personal Income Tax (PIT), Corporate Income Tax (CIT), Value Added Tax (VAT) and Total Tax Revenue(TTAXR) in the South African Revenue Service (SARS). The monthly data used for modeling tax revenues of the major taxes was drawn from January 1995 to March 2010 (in sample data) for PIT, VAT and TTAXR. Due to higher volatility and emerging negative values, the CIT monthly data was converted to quarterly data from the rst quarter of 1995 to the rst quarter of 2010. The competing ARIMA/SARIMA and Holt-Winters models were derived, and the resulting model of this study was used to forecast PIT, CIT, VAT and TTAXR for SARS fiscal years 2010/11, 2011/12 and 2012/13. The results show that both the SARIMA and Holt-Winters models perform well in modeling and forecasting PIT and VAT, however the Holt-Winters model outperformed the SARIMA model in modeling and forecasting the more volatile CIT and TTAXR. It is recommended that these methods are used in forecasting future payments, as they are precise about forecasting tax revenues, with minimal errors and fewer model revisions being necessary. / Statistics / M.Sc. (Statistics)
838

Atmospheric profiles of CO₂ as integrators of regional scale exchange

Smallman, Thomas Luke January 2014 (has links)
The global climate is changing due to the accumulation of greenhouse gases (GHGs) in the atmosphere, primarily due to anthropogenic activity. The dominant GHG is CO₂ which originates from combustion of fossil fuels, land use change and management. The terrestrial biosphere is a key driver of climate and biogeochemical cycles at regional and global scales. Furthermore, the response of the Earth system to future drivers of climate change will depend on feedbacks between biogeochemistry and climate. Therefore, understanding these processes requires a mechanistic approach in any model simulation framework. However ecosystem processes are complex and nonlinear and consequently models need to be validated against observations at multiple spatial scales. In this thesis the weather research and forecasting model (WRF) has been coupled to the mechanistic terrestrial ecosystem model soil-plant-atmosphere (SPA), creating WRF-SPA. The thesis is split into three main chapters: i. WRF-SPA model development and validation at multiple spatial scales, scaling from surface fluxes of CO₂ and energy to aircraft profiles and tall tower observations of atmospheric CO₂ concentrations. ii. Investigation of ecosystem contributions to observations of atmospheric CO₂ concentrations made at tall tower Angus, Dundee, Scotland using ecosystem specific CO₂ tracers at seasonal and interannual time scales. iii. An assessment of detectability of a policy relevant national scale afforestation by observations made at a tall tower. Detectability of changes in atmospheric CO₂ concentrations was assessed through a comparison of a control simulation, using current day forest extent, and an experimentally afforested simulation using WRF-SPA. WRF-SPA performs well at both site and regional scales, accurately simulating aircraft profiles of CO₂ concentration magnitudes (error <+- 4 ppm), indicating appropriate source sink distribution and realistic atmospheric transport. Hourly observations made at tall tower Angus were also well simulated by WRF-SPA (R² = 0.67, RMSE = 3.5 ppm, bias = 0.58 ppm). Analysis of CO₂ tracers at tall tower Angus show an increase in the seasonal error between WRF-SPA simulated atmospheric CO₂ and observations, which coincides with simulated cropland harvest. WRF-SPA does not simulate uncultivated land associated with agriculture, which in Scotland represents 36 % of agricultural holdings. Therefore, uncultivated land components may provide an explanation for the increase in model-data error. Interannual variation in weather is indicated to have a greater impact on ecosystem specific contributions to atmospheric CO₂ concentrations at Angus than variation in surface activity. In a model experiment, afforestation of Scotland was simulated to test the impact on Scotland’s carbon balance. The changes were shown to be potentially detectable by observations made at tall tower Angus. Afforestation results in a reduction in atmospheric CO₂ concentrations by up to 0.6 ppm at seasonal time scales at tall tower Angus. Detection of changes in forest surface net CO₂ uptake flux due to afforestation was improved through the use of a network of tall towers (R² = 0.83) compared to tall tower Angus alone (R² = 0.75).
839

On the Autoregressive Conditional Heteroskedasticity Models

Stenberg, Erik January 2016 (has links)
No description available.
840

Statistical forecasting and product portfolio management

Norvell, Joakim January 2016 (has links)
For a company to stay profitable and be competitive, the customer satisfaction must be very high. This means that the company must provide the right item at the right place at the right time, or the customer may bring its business to the competitor. But these factors bring uncertainty for the company in the supply chain of when, what and how much of the item to produce and distribute. For reducing this uncertainty and for making better plans for future demand, some sort of forecasting method must be provided. A forecast can however be statistically based and also completed with a judgmental knowledge if the statistics are not sufficient. This thesis has been done in cooperation with the Sales and Operations (S&amp;OP) department at Sandvik Mining Rock Tools in Sandviken, where a statistical forecast is currently used in combination with manual changes from sales. The forecasts are used as base for planning inventory levels and making production plans and are created by looking at the history of sales. This is done in order to meet market expectations and continuously be in sync with market fluctuations. The purpose with this thesis has been to study the item- customer combination demand and the statistical forecasting process that is currently used at the S&amp;OP department. One problem when creating forecast is how to forecast irregular demand accurately. This thesis has therefore been examining the history of sales too see in what extent irregular demand exists and how it can be treated. The result is a basic tool for mapping customers' demand behavior, where the behavior is decomposed into average monthly demand and volatility. Another result is that history of sales can get decomposed into Volatility, Volume, Value, Number of sales and Sales interval for better analysis. These variables can also be considered whenever analyzing and forecasting irregular demand. A third result is a classification of time series working as a guideline if demand should be statistically or judgmentally forecasted or being event based. The study analyzed 36 months history of sales for 56 850 time series of item- customer specific demand. The findings were that customers should have at least one year of continuous sales before the demand can be entirely statistically forecasted. The limits for demand to even be forecasted, the history of sales should at least occur every third month in average and contain at least six sales. Then the demand is defined as irregular and the forecast method is set to judgmental forecasting, which can be forecasted using statistical methods with manual adjustments. The results showed that the class of irregular demand represents approximately 70 percent in the aspect of revenue and therefore requires attention. / För att ett företag ska kunna vara lönsamt och konkurrenskraftigt måste kundnöjdheten vara mycket hög. Detta betyder att ett företag måste kunna förse rätt produkt i rätt tid på rätt plats, annars kommer kunden troligtvis att vända sig till konkurrenten. Men dessa faktorer kommer med osäkerhet för företaget i försörjningskedjan i när, vad och hur mycket av produkten de ska producera och distribuera. För att minska osäkerheten och för att planera bättre för framtida efterfrågan, måste någon typ av prognos upprättas. En prognos kan vara baserad på statistiska metoder men också kompletterad med subjektiv marknadsinformation om statistiken inte är tillräcklig. Studien som denna rapport beskriver är gjord i samarbete med Sales och Operations- avdelning (S&amp;OP) på Sandvik Mining Rock Tools i Sandviken. Där används statistiska prognoser i kombination med manuella förändringar av säljare samt regionala planerare som bas för planering av lagernivåer och produktion. Detta gör man för att möta marknadens efterfråga och för att kontinuerligt vara uppdaterad med marknadens variationer. Syftet med detta arbete har varit att studera kunders efterfrågan av produkt- kund kombination och den metod som används vid statistiska prognoser hos S&amp;OP- avdelningen. Ett problem som finns när man vill skapa prognoser är hur man ska prognostisera oregelbunden försäljning korrekt. Detta arbete har därför analyserat historisk försäljning för att se i vilken utsträckning oregelbunden efterfrågan finns och hur den kan hanteras. Resultatet är ett enkelt verktyg för att kunna kartlägga kunders köpbeteende. Ett till resultat är att historisk försäljning kan bli uppdelat i Volatilitet, Volym, Värde, Antalet köptillfällen och Tidsintervallet mellan köptillfällena. Dessa variabler kan även tas till hänsyn när man analyserar och prognostiserar oregelbunden försäljning. Ett tredje resultat är en klassificering av tidsserier som kan fungera som riktmärken om efterfrågan ska vara statistisk eller manuellt prognostiserade eller inte bör ha en prognos över huvud taget. Denna studie analyserade 36 månaders historik för 56 850 tidsserier av försäljning per produkt- kund kombination. Resultaten var att en kund bör ha åtminstone ett år av kontinuerlig efterfrågan innan man kan ha en prognos med statistiska modeller. Gränsen för att ens ha en prognos är att efterfrågan bör återkomma var tredje månad i genomsnitt och ha en historik av åtminstone sex försäljningstillfällen. Då klassificeras efterfrågan som oregelbunden och prognosen kan vara baserad på statistiska metoder men med manuella ändringar. I resultatet framkom det att oregelbunden efterfrågan representerar cirka 70 procent i avseende på intäkter och kräver således mycket uppmärksamhet.

Page generated in 0.0541 seconds