Spelling suggestions: "subject:"forest succession"" "subject:"forest succcession""
31 |
Post-harvest establishment influences ANPP, soil C and DOC export in complex mountainous terrainPeterson, Fox S. 05 November 2012 (has links)
The link between aboveground net primary productivity (ANPP) and resource gradients generated by complex terrain (solar radiation, nutrients, and moisture) has been established in the literature. Belowground ecosystem stocks and functions, such as soil organic carbon (SOC), dissolved organic carbon (DOC), and belowground productivity have also been related to the same topography and resource distributions, and therefore it is expected that they share spatial and temporal patterns with ANPP. However, stand structure on complex terrain is a function of multiple trajectories of forest development that interact with existing resource gradients, creating feedbacks that complicate the relationships between resource availability and ANPP. On a 96 ha forested watershed in the H.J. Andrews Experimental Forest in the Western Cascades range of Oregon, spatiotemporal heterogeneity in the secondary succession of a replanted Pseudotsuga menziesii stand following harvest results from the interaction of stand composition and abiotic drivers and may create unique "hot spots" and "hot moments" that complicate gradient relationships. In this dissertation, I tested the hypotheses that (chapter 3) multiple successional trajectories exist and can be predicted from a general linear model using specific topographic, historical, and biological parameters and that an estimated "maximum ANPP" may better represent stand characteristics than ANPP measured at a particular moment in time. I also test that (chapter 4) the distribution of light fraction carbon (LFC; C with a density of less than 1.85 g/cm��) is spatially variable, elevated on hardwood-initiated sites (hardwood biomass > 50% of biomass), and positively correlated with litter fall and ANPP. Chapter 4 also tests that heavy fraction carbon (HFC; C with a density of greater than 1.85 g/cm��) is a function of both soil mineralogy, stand composition, and ANPP, such that edges observed spatially in site mineralogy (changes in soil type) are reflected in sharp changes in the composition of the forest community and the magnitude of HFC stores.
Finally, I hypothesized (chapter 5) that in complex terrain, dissolved organic carbon (DOC) export can be predicted from landform characteristics, relates to ANPP, and may be measured by several methods which are well-correlated with one another.
In chapter 6, I discuss how litter fall measurements can be extrapolated to a watershed extent, and use litter fall as an example of the error that can occur in scaling up measurements taken at a small scale, within a heterogeneous stand on complex terrain, to a landscape scale extent. / Graduation date: 2013
|
Page generated in 0.0916 seconds