Spelling suggestions: "subject:"forms (amathematics)"" "subject:"forms (bmathematics)""
21 |
A closed form for the Kazhdan-Lusztig polynomials for real reductive lie groups with the Cayley singleton property /Keynes, Michael S. January 1999 (has links)
Thesis (Ph. D.)--University of Washington, 1999. / Vita. Includes bibliographical references (p. 79-80).
|
22 |
Étude de quelques perturbations d'équations riches en symétries : résonances et stabilités / Study of some equations with many symmetries : resonances and stabilityBernier, Joackim 04 July 2019 (has links)
Cette thèse est un recueil de constructions et de résultats variés autour de problèmes de résonances et de stabilités. Premièrement, on s'intéresse à la conception et à l'analyse de méthodes numériques pour des problèmes académiques tels que le problème de Dirichlet sur un segment ou l'équation de transport associée à une rotation du plan. Ensuite, on étend l'analyse linéaire classique des équations de Vlasov-Poisson autour d'états d'équilibre homogènes pour décrire des phénomènes multidimensionnels et non linéaires. Enfin, une large partie est consacrée à l'étude d'équations de Schrödinger non linéaires en dimension 1. D'une part, on étudie l'impact d'une semi-discrétisation naturelle sur les ondes solitaires progressives et la croissance des normes de Sobolev. D'autre part, on développe une nouvelle famille de formes normales permettant de décrire la dynamique des petites solutions régulières pendant des temps très longs. / This manuscript deals with many problems about resonance and stability. First, we design and analyse numerical methods for academic problems like the Dirichlet problem on a segment line or the transport equation associated with a two dimensional rotation. Then, we extend the classical linear analysis of Vlasov-Poisson equations near homogeneous equilibria to describe nonlinear and multidimensional phenomena. Finally, a large part of this thesis is devoted to nonlinear Schrödinger equations in dimension 1. On the one hand, we study the impact of a natural semi-discretisation on the solitary traveling waves and on the growth of the high order Sobolev norms. On the other hand, we develop a new family of normal forms to describe the dynamic of small and smooth solutions for very long times.
|
23 |
Orbitas periodicas em sistemas mecanicos / Periodic orbits in dynamical systemsRoberto, Luci Any Francisco 17 March 2008 (has links)
Orientador: Marco Antonio Teixeira / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-10T12:10:27Z (GMT). No. of bitstreams: 1
Roberto_LuciAnyFrancisco_D.pdf: 627926 bytes, checksum: 0c8cb4e26df805282fa716847859d82f (MD5)
Previous issue date: 2008 / Resumo: Neste trabalho estudamos sistemas dinâmicos possuindo estruturas Hamiltonianas e reversíveis( / Abstract: In this work we study dynamical systems possessing Hamiltonian and time-reversible structures. The reversibility concept is de¯ned in terms of an involution. Initially we discuss the dynamics of Hamiltonian vector ¯elds with 2 and 3 degrees of freedom around an elliptic equilibrium in the presence of an involution which preserves the symplectic structure. The main results discuss the existence of one-parameter families of reversible periodic solutions terminating at the equilibrium. The main techniques that are used in the proofs are Belitskii and Birkho® normal forms and the Liapunov-Schmidt Reduction. Next we consider a case of the 3-body restricted problem in rotating coordinates. In this case the two primaries are oving
in an elliptic collision orbit. By the continuation method of Poincare we characterize that the periodic circular orbits and the symmetric periodic elliptic orbits from the Kepler problem which can be prolonged to pseudo periodic orbits of the planar restricted 3{body problem in rotating coordinates with the two primaries moving in an elliptic collision orbit / Doutorado / Topologia e Geometria / Doutor em Matemática
|
24 |
Um modelo de espaço de estados com representação de segunda ordem para a analise das oscilações de modo interarea em sistemas de energia eletrica / A space state model including second order representation for the analysis of power systems inter-area mode oscillationsDomingues, Adriana Favaro 18 March 2005 (has links)
Orientador : Vivaldo Fernando da Costa / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação / Made available in DSpace on 2018-08-04T02:42:32Z (GMT). No. of bitstreams: 1
Domingues_AdrianaFavaro_D.pdf: 789245 bytes, checksum: 9ca2b124a01cd871aa7f4bbb4c63c57a (MD5)
Previous issue date: 2005 / Resumo: Este trabalho aborda o problema das oscilações eletromecânicas de baixa freqüência de modo interárea em sistemas de energia elétrica através de duas metodologias: primeiramente, através do método convencional da análise modal linear e, posteriormente, através da aplicação do método da forma normal dos campos vetoriais como ferramenta para viabilizar o acréscimo dos termos não lineares de segunda ordem resultantes da expansão em série de Taylor. Neste caso, o método da forma normal é aplicado a um Modelo de Sensibilidade de Potência com representação de segunda ordem, para investigar os efeitos das interações não lineares entre os modos naturais de oscilação de sistemas de energia elétrica. São consideradas, em ambas as análises, a inclusão de dispositivos
FACTS e da modelagem dinâmica das cargas. As simulações são realizadas para um sistema simétrico de duas áreas e para o Sistema Equivalente Sul-Sudeste Brasileiro. A metodologia de análise proposta mostra-se bastante satisfatória como alternativa à simulação não linear no domínio do tempo e à análise modal convencional / Abstract: In this work, the analysis of power systems inter-area mode oscillations is performed by the application of two different methodologies: first, the linear modal analysis, and then the analysis including second order nonlinear terms from a Taylor series expansion, with the application of the method of normal forms of vector fields. In this case, the method of normal forms is applied to a
Power Sensitivity Model including second order nonlinear terms, in order to investigate the effects of nonlinear interactions between system modes. Both methodologies consider the inclusion of FACTS devices and dynamic load model. Simulations are performed for a symmetric two-area test power system and for the Equivalent South-Southeast Brazilian system. The results obtained show that the methodology proposed is very effective as an alternative to linear modal analysis and timedomain simulation in the performance of inter-area mode oscillations analysis / Doutorado / Energia Eletrica / Doutor em Engenharia Elétrica
|
25 |
Formalidade geométrica e números de Chern em variedades flag / Geometric formality and Chern numbers on flag manifoldsOliveira, Ailton Ribeiro de, 1987- 27 August 2018 (has links)
Orientadores: Caio José Colletti Negreiros, Lino Anderson da Silva Grama / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-27T16:12:58Z (GMT). No. of bitstreams: 1
Oliveira_AiltonRibeirode_D.pdf: 1000877 bytes, checksum: 4f91902c1ef47fbb7b02f75348402924 (MD5)
Previous issue date: 2015 / Resumo: A primeira parte do trabalho é dedicada ao estudo da formalidade geométrica em variedades flag. Uma Estrutura Riemanniana (M,g) é geometricamente formal se g possui a propriedade que todos os produtos wedge de formas harmônicas são harmônicos. Tal métrica g é chamada formal. Vamos analisar esse fato quando M é uma variedade flag usando métodos topológicos. Na verdade, mostraremos que muitas variedades flag não admitem nenhuma métrica formal g. Na segunda parte do trabalho, calcularemos os números de Chern de várias variedades flag e vamos usá-los para classificar algumas estruturas quase complexas invariantes. Além disso, mostraremos, com o auxílio do Teorema de Kodaira, que os números de Chern satisfazem algumas relações impostas pelo Teorema de Hirzebruch-Riemann-Roch / Abstract: The first part of work is dedicated to the study of geometric formality on flag manifolds. A Riemannian Structure (M,g) is geometrically formal if g has the property that all wedge products of harmonic forms are harmonic. Such metric g is called formal. We are going to analyse this fact when M is a flag manifold using topological methods. Indeed, we will show that many flag manifolds do not admit a formal metric g. In the second part of work, we will calculate Chern numbers of many flag manifolds and we are going to use them to classify some invariant almost complex structures. Furthermore, we will show with help of the Kodaira Theorem that the Chern numbers satisfy some relations imposed by the Hirzebruch-Riemann-Roch Theorem / Doutorado / Matematica / Doutor em Matemática
|
Page generated in 0.0582 seconds