Spelling suggestions: "subject:"fouille dde donnée"" "subject:"fouille dee donnée""
1 |
Definition of a human-machine learning process from timed observations : application to the modelling of human behaviourfor the detection of abnormal behaviour of old people at home / Définition d'un processus d'apprentissage par l'homme et la machine à partir d'observations datées : application à la modélisation du comportement humain pour la détection des comportements anormaux de personnes âgées maintenues dans leur domicilePomponio, Laura 26 June 2012 (has links)
L'acquisition et la modélisation de connaissances ont été abordés jusqu'à présent selon deux approches principales : les êtres humains (experts) à l'aide des méthodologies de l'Ingénierie des Connaissances et le Knowledge Management, et les données à l'aide des techniques relevant de la découverte de connaissances à partir du contenu de bases de données (fouille de données). Cette thèse porte sur la conception d'un processus d'apprentissage conjoint par l'être humain et la machine combinant une approche de modélisation des connaissances de type Ingénierie des Connaissances (TOM4D, Timed Observation Modelling for Diagnosis) et une approche d'apprentissage automatique fondée sur un processus de découverte de connaissances à partir de données datées (TOM4L, Timed Observation Mining for Learning). Ces deux approches étant fondées sur la Théorie des Observations Datées, les modèles produits sont représentés dans le même formalisme ce qui permet leur comparaison et leur combinaison. Le mémoire propose également une méthode d'abstraction, inspiée des travaux de Newell sur le "Knowledge Level'' et fondée sur le paradigme d'observation datée, qui a pour but de traiter le problème de la différence de niveau d'abstraction inhérent entre le discours d'un expert et les données mesurées sur un système par un processus d'abstractions successives. Les travaux présentés dans ce mémoire ayant été menés en collaboration avec le CSTB de Sophia Antipolis (Centre Scientifique et Technique du Bâtiment), ils sont appliqués à la modélisation de l'activité humaine dans le cadre de l'aide aux personnes âgées maintenues à domicile. / Knowledge acquisition has been traditionally approached from a primarily people-driven perspective, through Knowledge Engineering and Management, or from a primarily data-driven approach, through Knowledge Discovery in Databases, rather than from an integral standpoint. This thesis proposes then a human-machine learning approach that combines a Knowledge Engineering modelling approach called TOM4D (Timed Observation Modelling For Diagnosis) with a process of Knowledge Discovery in Databases based on an automatic data mining technique called TOM4L (Timed Observation Mining For Learning). The combination and comparison between models obtained through TOM4D and those ones obtained through TOM4L is possible, owing to that TOM4D and TOM4L are based on the Theory of Timed Observations and share the same representation formalism. Consequently, a learning process nourished with experts' knowledge and knowledge discovered in data is defined in the present work. In addition, this dissertation puts forward a theoretical framework of abstraction levels, in line with the mentioned theory and inspired by the Newell's Knowledge Level work, in order to reduce the broad gap of semantic content that exists between data, relative to an observed process, in a database and what can be inferred in a higher level; that is, in the experts' discursive level. Thus, the human-machine learning approach along with the notion of abstraction levels are then applied to the modelling of human behaviour in smart environments. In particular, the modelling of elderly people's behaviour at home in the GerHome Project of the CSTB (Centre Scientifique et Technique du Bâtiment) of Sophia Antipolis, France.
|
Page generated in 0.0807 seconds