Spelling suggestions: "subject:"crc"" "subject:"rrc""
1 |
Investigation into the functional nature of Frc locus conditioning fructan levels in onionRevanna, Roopashree January 2012 (has links)
Frc, a major gene on chromosome 8, conditions fructan levels in onions (Allium cepa L). In order to assist genetic dissection of this locus, this study aimed to determine the factors influencing varying fructan levels in high- and low-fructan genotypes. Mapping families were developed and analysed to study the genetic architecture for the fructan trait, and to check the association of the identified variables with the Frc locus. To facilitate reliable and practicable sugar assays in onions, a newly-adapted high-throughput microplate enzymatic assay was validated in this study. The reliability of using leaf sugars as a representative of bulb sugars in a mapping population was studied.
Microplate enzymatic sugar assays were carried out on a segregating onion cross to validate the use of maltases in sugar analysis, and the results obtained were validated against HPLC-PAD. Sucrose measured in microplates employing maltases as the hydrolytic enzyme was in agreement with HPLC-PAD results. Maltase enzymes specifically hydrolysed sucrose in onions, providing an alternate tool in place of expensive sugar assay kits. Use of the microplate-enzymatic assay provided a rapid, cheap and practicable method for sugar analysis in onion.
Differences in carbohydrate content, sucrose metabolising enzyme activities and their expression levels were monitored in developing leaf blades and leaf bases of four high- and four low-fructan genotypes. The variation in fructan accumulation between high- and low-fructan genotypes was due to the variation in sucrose metabolism. SPS expression and activity did not vary between high- and low-fructan genotypes. Acid invertase and 1-SST showed significant variation in their activities between the two fructan groups. Post-transcriptional and translational regulation of AI and 1-SST respectively, are suggested.
Mapping populations analysed for non-structural carbohydrates showed very wide segregation for fructan (80 to 600 g kg⁻¹) and other NSC content, and were well-suited for detailed genetic and physiological analysis. Single marker analysis was carried out to study the association between the combined enzyme activity (CEA; acid invertase + 1-SST) and the Frc markers. Significant association between CEA and Frc markers has suggested genes regulating acid invertases or 1-SST or both underlie Frc. Leaf blade NSC did not correlate with bulb sugars and thus cannot be used as a phenotypic marker for early selection of bulb NSC traits.
|
2 |
Model dentálního můstku vyztuženého vláknovým kompozitem / Model of Fiber Reinforced Composite Dental BridgeHasala, Robert January 2014 (has links)
The diploma thesis aimed to changes of mechanical properties in the influence the use of geometry reinforcement, time delay between cure and measurement. Mechanical properties of model dental bridge observed effect of hydrothermal stress. Dental bridges were reinforced two types of Fiber Reinforced Composites. The first reinforcement had straight unidirectional orientation. The second reinforcement had multidirectional orientation. Mechanical testing was realized in the dependence at the force to deformation model of the dental bridge. Conversion was counted pursuant photo DSC measurement. The character of break was observed at SEM pictures and macro photos. Type of material and reinforcement fibers and their combination had important role at the mechanical properties.
|
3 |
Tensile creep of cracked macro synthetic fibre reinforced concreteBabafemi, Adewumi John 03 1900 (has links)
Thesis (PhD)--Stellenbosch University, 2015. / ENGLISH ABSTRACT: Macro synthetic fibres are known to significantly improve the toughness and energy absorption
capacity of conventional concrete in the short term. However, since macro synthetic fibre are flexible
and have relatively low modulus of elastic compared to steel fibres, it is uncertain if the improved
toughness and energy absorption could be sustained over a long time, particularly under sustained
tensile loadings.
The main goal of this study is to investigate the time-dependent crack mouth opening response of
macro synthetic fibre reinforced concrete (FRC) under sustained uniaxial tensile loadings, and to
simulate the flexural creep behaviour. For the purpose of simulating the in-service time-dependent
condition, all specimens were pre-cracked.
Experimental investigations were carried out at three levels (macro, single fibre and structural) to
investigate the time-dependent behaviour and the mechanisms causing it. At the macro level,
compressive strength, uniaxial tensile strength and uniaxial tensile creep test at 30 % to 70 % stress
levels of the average residual tensile strength were performed. To understand the mechanism causing
the time-dependent response, fibre tensile test, single fibre pullout rate test, time-dependent fibre
pullout test and fibre creep test were done. Flexural test and flexural creep test were done to simulate
the structural level performance.
The results of this investigation have shown significant drop in stress and increase in crack width
of uniaxial tensile specimens after the first crack. The post cracking response has shown significant
toughness and energy absorption capacity. Under sustained load at different stress levels, significant
crack opening has been recorded for a period of 8 month even at a low stress level of 30 %. Creep
fracture of specimens occurred at 60 % and 70 % indicating that these stress levels are not sustainable
for cracked macro synthetic FRC.
The single fibre level investigations have revealed two mechanisms responsible for the time-dependent crack widening of cracked macro synthetic FRC under sustained loading: time-dependent fibre pullout and fibre creep. In all cases of investigation, fibre failure was by complete pullout
without rupture.
Flexural creep results have shown that the crack opening increases over time. After 8 months of
investigation, the total crack opening was 0.2 mm and 0.5 mm at 30 % and 50 % stress levels
respectively.
Since the crack opening of tensile creep and flexural creep specimens cannot be compared due to
differences in geometry, specimen size, load transfer mechanisms and stress distribution in the
cracked plane, a finite element analysis (FEA) was conducted. Material model parameters obtained
from the uniaxial tensile test and viscoelastic parameters from curve fitting to experimental uniaxial
creep results have been implemented to successfully predict the time-dependent crack opening of
specimens subjected to sustained flexural loading. Analyses results correspond well with experimental
result at both 30 % and 50 % stress levels. / AFRIKAANSE OPSOMMING: Makro sintetiese vesels is bekend daarvoor dat dit die taaiheid en energie absorpsie van
konvensionele beton beduidend verbeter in die kort termyn. Aangesien makro sintetiese vesels
buigsaam is met 'n relatiewe lae styfheidsmodulus in vergeleke met staalvesels, is dit onseker of die
verhoogde kapasiteit vir energie absorpsie en taaiheid volgehou kan word oor die langer termyn,
veral in gevalle waar dit aan volgehoue trekkragte blootgestel is.
Die hoofdoel van die studie is om die tydafhanklike-kraakvergrotingsgedrag van makro sintetiese
veselversterkte beton (VVB) wat blootgestel is aan volgehoue trekkragte te ondersoek asook die
simulasie van die kruipgedrag in buig. Ten einde die werklike toetstande te simuleer is al die
proefstukke doelbewus gekraak in 'n beheerde manier voor die aanvang van die toetse.
Die eksperimentele ondersoek is uitgevoer op drie vlakke (makro, enkelvesel en strukturele) om
die tydafhanklike gedrag sowel as die meganismes verantwoordelik vir hierdie gedrag te ondersoek.
Op die makro-vlak is druktoetse gedoen saam met eenassige trek- en eenassige kruiptoetse met
belastings tussen 30 % en 70 % van die gemiddelde residuele treksterkte. Om die meganisme wat die
tydafhanklike gedrag veroorsaak te verstaan is veseltoetse, enkel vesel uittrektoetse, enkel vesel
uittrek kruiptoetse asook kruiptoetse op vesels gedoen. Buigtoetse en buig kruiptoetse is ook gedoen
om die gedrag op die strukturele vlak te ondersoek.
Die resultate van hierdie ondersoek wys dat daar 'n beduidende val in spanning is en dat daar
gepaardgaande kraak opening in die eenassige trek proefstukke plaasgevind het na die vorming van 'n
kraak. Die na-kraak gedrag wys beduidende taaiheid en energie absorpsie kapasiteit. Gedurende die
volgehoue trekbelasting by verskillende spanningsvlakke is beduidende kraakvergroting opgemerk,
selfs by 30 % belasting na 8 maande. Kruipfaling het plaasgevind by proefstukke met belastings van
60 % en 70 % wat daarop wys dat hierdie spanningsvlakke nie geskik is vir gekraakte makro sintetiese VVB nie. Op die enkel veselvlak is twee meganismes geïdentifiseer wat verantwoordelik is vir die
kraakvergroting oor tyd vir gekraakte makro sintetiese VVB met volgehoue trekbelasting:
tydafhanklike vesel uittrek en vesel-kruip. In alle gevalle in hierdie ondersoek was die
falingsmeganisme vesels wat uittrek.
Buig kruiptoets resultate wys dat die krake vergroot oor tyd. Na 8 maande van ondersoek was die
kraakwydtes 0.2 mm en 0.5 mm by 30 % en 50 % spanningsvlakke onderskeidelik.
Aangesien die kraak opening van eenassige trek kruiptoetse en die buig kruiptoetse nie direk met
mekaar vergelyk kan word nie weens die verskille in geometrie, proefstuk grootte en
spanningsverdeling in die kraakvlak, is 'n eindige element analises (EEA) gedoen. Materiaal
eienskappe is bepaal deur gebruik te maak van die eenassige kruip trektoets se resultate en viskoelastiese
parameters is bepaal deur middel van kurwepassing van die resultate. Dit was gebruik om
suksesvol die buig kruip kraak opening gedrag te simuleer. Die analises se resultate vergelyk goed
met die eksperimentele data by beide 30 % en 50 % spanningsvlakke.
|
4 |
Celebrating the chaos: a local re-examining of early U.S. radio regulationPobst, James Herbert 01 December 2009 (has links)
This dissertation re-examines a particular period of American broadcasting regulation in the 1920s, namely the "chaos" period traditionally labeled as the brief time in between the breakdown of federal radio regulation in early 1926 and the passage of the Radio Act of 1927. Using the ideas of heteroglossia and vernacular discourse drawn respectively from Mikhail Bakhtin and Gerard Hauser, I argue that the media scholarship understanding of chaos needs to be expanded beyond the conventional interpretation of a fatalistic moment which inevitably resulted in the support for broadcast commercialization on a national scale. This theoretical expansion reflects three trends that can be studied in this period: several years of uncertainty in regulatory decision-making, the attempted emergence of a greater variety of stations, and a substantive public debate about the direction of regulation towards commercialization. Chaos can ultimately be looked at as a positive term with ties to the traditional ideal of public interest in broadcasting.
I explore three levels and local examples of public discourse to make this argument about chaos, in the process concentrating on Chicago area stations, in particular WCFL and WJAZ, and their experiences during this period. First of all, congressional records of debate over radio regulation as well as the early actions of the Federal Radio Commission establish a level of governmental discourse that struggled to rationalize the elimination of stations towards network commercialization. Second, trade journals such as Radio Broadcast reflect a level of public discourse in close collaboration with regulators, but also reflective of listener voices resistant to the predominance of big commercial stations. Thirdly, WCFL programming, as characterized differently by both Chicago newspaper accounts and station literature, is regarded as contemporary evidence of the heteroglossic and vernacular quality of local broadcasting in urban environments, to be affected negatively by the regulatory turn towards the networks. Re-exploring this period with a more positive evaluation of "chaos," however, can aid scholars in drawing on historical support for media reform movements in an ever-changing communication environment.
|
5 |
Uni-Axial Tensions Testing On Synthetic Fibre Reinforced ConcretePoushay, Lynsey 02 August 2012 (has links)
The purpose of this research was to determine uni-axial response of synthetic fibres required for structural design. The stress versus crack opening curves, required by RILEM for structural design of fibre reinforced concrete, were determined for each fibre type investigate and were used to compare the per fibre post-crack response, the pullout curves, and the flexural response. A study of the fibre distribution was conducted in order to determine the orientation factor required to predict the number of fibres expect in the tensile specimen crack face. The orientation factor, dosage, fibre geometry, and per fibre post-crack response were determined in order to predict the resulting tensile strength of a concrete mix. The tensile strength was compared to that of steel fibre currently being used in structural applications. The synthetic fibres tested only achieve a small percentage of their ultimate tensile strength; in order to produce synthetic fibres for structural applications, the bond strengths must be improved.
|
6 |
Pre-ionization studies on the modular theta-pinch experiment for field-reversed configuration applicationsBean, Ian Alexander 31 October 2024 (has links)
A new semi-empirical model is introduced for the quantification of inductively-coupled breakdown systems. The model is informed by breakdown studies conducted on the Modular Theta-pinch eXperiment (MTX). Observations made of inductively-coupled breakdown behaviour are consistent with the model's expectations, indicating that the model can be used to aid in design of inductively-coupled pre-ionization systems. The model is further found to be capable of quantifying the efficacy of seed ionization in inductively-coupled systems. Comparisons are made between the standard ringing-theta and a new field-aligned dipole pre-ionization systems. In the presence of sufficient seed ionization, no physical reason was observed for selection of one method over the other, leaving only engineering considerations as the determining factor for selection of an appropriate pre-ionization system. This work is supported by the Institute for Critical Technology and Applied Science (ICTAS) at Virginia Tech and the National Nuclear Security Administration of the U.S. Department of Energy. LA-UR-24-31269 / Doctor of Philosophy / A new experiment at Los Alamos National Laboratory called the Modular Theta-pinch eXperiment (MTX) has been constructed to explore a variety of applications of Field-Reversed-Configurations (FRCs). An FRC is a plasma torus with a unique magnetic field configuration that has potential applications for astrophysical shock studies, fusion energy, and space proplusion. The first step in forming an FRC is the pre-ionization step, in which a plasma is created with a magnetic field diffused throughout its volume. The first purpose of this study is to better characterize inductively-coupled breakdown. Breakdown refers to the transition of a gas into a plasma (the fourth state of matter). To do this using inductively-coupled methods means that oscillating magnetic fields are used to induce electric fields in the gas, which cause electrons to gain energy and eventually collide with gas particles, creating a plasma. The second purpose of this study is to compare the more common ringing-theta pre-ionization method to a field-aligned method. Ringing-theta systems have been observed to encounter difficulties with diffusion of magnetic field into the pre-ionized plasma and field-aligned methods are a potential alternative that can circumvent the problems that ringing-theta systems encounter. Together, these studies should allow for other experimentalists to more easily design pre-ionization systems for both FRC experiments and general plasma physics experiments.
|
7 |
Synthèse de copolymères diblocs par le procédé RAFT : Application pour revêtements anti-salissures marines hybrides FRC/SPC / Synthesis of diblock copolymers by the RAFT process : Application for FRC/SPC hybrid marine antifouling coatingsLejars, Marlène 22 October 2012 (has links)
Actuellement, il existe deux types de peintures anti-salissures marines sur le marché : - Les Self-Polishing Coatings (SPC), revêtements auto-polissants à base de liants polymères hydrolysables, efficaces par relargage de biocides dans le milieu marin mais toxiques pour l’environnement ; - Les Fouling Release Coatings (FRC), revêtements hydrophobes à base de silicone, sans biocides, qui limitent la force d’adhésion des salissures mais ne sont pas efficaces en mode statique.L’objectif de cette étude est d’élaborer des peintures anti-salissures marines hybrides FRC/SPC. Pour ce faire, des polymères diblocs à la fois hydrolysables et présentant une faible énergie de surface ont été synthétisés et caractérisés puis utilisés en tant que liants dans la formulation de peintures anti-salissures marines.Le procédé de polymérisation RAFT a été employé afin de synthétiser des polymères avec une architecture et une masse molaire contrôlée. Deux approches ont été abordées :- Des polymères ont été synthétisés à base de monomères de faible énergie de surface et hydrolysables (le méthacrylate de (heptaméthyl-trisiloxy)diméthylsilyle et le méthacrylate de bis(triméthylsilyloxy)méthylsilyle) avec un co-monomère méthacrylate de méthyle ou méthacrylate de butyle. Il a notamment pu être montré que les copolymères de structure dibloc présentent une énergie de surface plus faible que les copolymères statistiques.- Des polymères ont été synthétisés à partir de monomères hydrolysables tel que le méthacrylate de tert-butyldiméthylsilyle et de monomères de faible énergie de surface tel que le méthacrylate de poly(diméthyl-siloxane).Les propriétés d’érosion (type SPC) et d’énergie de surface (type FRC) ont été étudiées pour les liants seuls et les peintures formulées, avant et pendant leur immersion en eau de mer artificielle. L’efficacité anti-salissures marines des peintures formulées a été évaluée lors de leur immersion in-situ en Mer Méditerranée. / Two main types of antifouling coatings are present on the market: - The Self-Polishing Coatings (SPC): they are based on hydrolysable polymer binders and their antifouling efficiency relies on the release of biocides in the marine surrounding. Unfortunately, they are toxic for the marine environment- The Fouling Release Coatings (FRC): these hydrophobic silicone-based coatings limit the adhesion strength of fouling organisms and are biocide-free. Nevertheless, they are not efficient during idle periods.The aim of this study is to develop FRC/SPC hybrid antifouling coatings. Thus, diblock polymers both hydrolysable and with a low surface energy have been synthesized and characterized, then used as binders for the formulation of antifouling coatings.Polymerization by the RAFT process has been used to synthesize well-architectured polymers with controlled molecular weights. Two different approaches have been considered:- Polymers have been synthesized from low surface energy and hydrolysable monomers ((heptamethyl-trisiloxy)dimethylsilyl methacrylate and bis(trimethylsilyloxy)methylsilyl methacrylate) and a co-monomer of methyl or butyl methacrylate. It has been demonstrated that the diblock copolymers exhibit a lower surface energy than the statistical copolymers.- Polymers have been synthesized from hydrolysable monomers (tert-butyldimethylsilyl methacrylate) and low surface energy monomers (poly(dimethylsiloxane) methacrylate).The erosion properties (SPC-type) and the hydrophobicity (FRC-type) have been studied for both the binders and the formulated coatings, before and during their immersion in artificial seawater. The antifouling efficiency of the formulated coatings has been evaluated during their in-situ immersion in the Mediterranean Sea.
|
8 |
Synthèse, caractérisation, étude des performances de polymères à blocs utilisés comme liants de peintures anti-salissures marines / Synthesis, characterization, performances of block copolymers as binders for marine antifouling paintsDuong, The-Hy 27 May 2014 (has links)
L’objectif de ces travaux est de synthétiser des copolymères diblocs et triblocs à base d'unités monomères méthacrylate de tert-butyldiméthylsilyle et diméthylsiloxane. Le choix de ces unités monomères repose sur l'élaboration de films polymères hydrolysables dans le milieu marin et de faible énergie libre de surface, respectivement. Ces polymères ont été caractérisés puis utilisés comme liants dans la formulation de peintures anti-salissures marines SPC/FRC hybrides. Les performances des revêtements obtenus ont alors été comparées aux deux types de revêtements anti-salissures marines disponibles sur le marché : - les revêtements auto-polissants (Self-polishing copolymer, SPC), à base de liants polymères hydrolysables, efficaces par relargage de biocides dans le milieu marin et par érosion, mais toxiques pour l’environnement ; - les revêtements Fouling Release" (FRC), hydrophobes à base de silicone, et non toxiques, qui limitent la force d’adhésion des salissures mais sans efficacité en mode statique.Le procédé de polymérisation RAFT a été employé afin de synthétiser des polymères avec des architectures, des compositions et des masses molaires contrôlées. Des macro-agents de transfert de chaîne à base de poly(diméthylsiloxane)s ont été préalablement synthétisés à partir de poly(diméthylsiloxane)s mono et di-hydroxylés, de masses molaires 1000 , 5000 et 10000 g.mol-1. Trois séries de copolymères ont été préparées avec des masses molaires allant de 12000 à 60000 g.mol-1 et des teneurs en unités diméthylsiloxanes allant de 3% à 57%.Les propriétés de prise en eau, d'érosion (type SPC) et de mouillabilité (type FRC) ont été étudiées pour les liants seuls et les revêtements formulés avec et sans biocides. L'évolution de l'hydrophobie de surface des revêtements pendant leur immersion en eau de mer artificielle a été suivie. L'efficacité anti-adhésion bactérienne d'une série de copolymères, sous forme de vernis et de revêtements formulés, a été étudiée vis-à-vis de deux souches de bactéries marines. Enfin, l’efficacité anti-salissure marine des vernis et des revêtements formulés avec et sans biocides a été évaluée lors d'une immersion in-situ en Mer Méditerranée pendant 16 mois au maximum. / The aim of this study is to synthesize diblock and triblock copolymers based on tert-butyldimethylsilyl methacrylate and dimethylsiloxane monomer units. These monomer units have been selected to elaborate polymer films both hydrolysable in the marine environment and with a low surface energy. These copolymers have been fully characterized and have been formulated to develop FRC/SPC hybrid antifouling coatings. The performances of these new coatings have been compared to the two main types of antifouling coatings on the market:- the Self-Polishing coatings (SPC), based on hydrolysable polymer binders with an efficiency relied on the release of biocides in the marine environment and the erosion of the coating. Unfortunately, these coatings toxic for the marine environment;- the Fouling Release Coatings (FRC), based on hydrophobic and non-toxic silicone-based coatings which limit the adhesion strength of fouling organisms. Nevertheless, they are not efficient during idle periods. Block copolymers with controlled architecture, chemical composition and molar masses have been synthesized via the RAFT process from poly(dimethylsiloxane)-based chain transfer agents. These macro-chain transfer agents have been previously prepared from mono- and di-hydroxylated poly(dimethylsiloxane)s with molar masses of 1,000, 5,000 and 10,000 g.mol-1. Three series of copolymer have been synthesized with molar masses ranging from 12,000 to 60,000 g.mol-1 and a mass content of dimethylsiloxane units ranging from 3% to 57%. The water uptake, the erosion properties (SPC type) and the hydrophobicity (FRC-type) have been studied for both the binders and the coatings formulated with and without biocides. The evolution of the hydrophobic properties of the coatings' surface has been investigated during their immersion in artificial seawater. The anti-adhesion properties of one series of copolymers have been investigated toward two marine bacterial strains. Then, the antifouling efficiency of the binders and the coatings formulated with and without biocides has been evaluated during their in-situ immersion in the Mediterranean Sea for 16 months at a maximum.
|
9 |
Cracking Behaviour of Steel Fibre Reinforced Concrete Containing Conventional Steel ReinforcementDeluce, Jordon Robert 23 August 2011 (has links)
It is well known that crack spacings and widths can be reduced with the addition of steel fibres to a concrete mix. However, test data for the tensile behaviour of steel fibre reinforced concrete members containing conventional steel reinforcement (R/FRC members) are scarce relative to those of reinforced concrete (RC) specimens and fibre reinforced concrete (FRC) specimens without reinforcing bars.
In this research program, uniaxial tension tests were conducted on 12 RC and 48 R/FRC specimens in order to observe cracking and tension stiffening behaviour. The parameters under observation were fibre volumetric content, fibre length and aspect ratio, conventional reinforcement ratio and steel reinforcing bar diameter. ‘Dog-bone’ tension tests and bending tests were also performed in order to determine tensile material properties.
It was discovered that currently available crack spacing formulae significantly overestimate the average stabilized crack spacing for R/FRC; therefore, an improved crack spacing model was developed and proposed.
|
10 |
Cracking Behaviour of Steel Fibre Reinforced Concrete Containing Conventional Steel ReinforcementDeluce, Jordon Robert 23 August 2011 (has links)
It is well known that crack spacings and widths can be reduced with the addition of steel fibres to a concrete mix. However, test data for the tensile behaviour of steel fibre reinforced concrete members containing conventional steel reinforcement (R/FRC members) are scarce relative to those of reinforced concrete (RC) specimens and fibre reinforced concrete (FRC) specimens without reinforcing bars.
In this research program, uniaxial tension tests were conducted on 12 RC and 48 R/FRC specimens in order to observe cracking and tension stiffening behaviour. The parameters under observation were fibre volumetric content, fibre length and aspect ratio, conventional reinforcement ratio and steel reinforcing bar diameter. ‘Dog-bone’ tension tests and bending tests were also performed in order to determine tensile material properties.
It was discovered that currently available crack spacing formulae significantly overestimate the average stabilized crack spacing for R/FRC; therefore, an improved crack spacing model was developed and proposed.
|
Page generated in 0.0539 seconds