Spelling suggestions: "subject:"freefem++"" "subject:"freefemm++""
11 |
A Two Dimensional Model of a Direct Propane Fuel Cell with an Interdigitated Flow FieldKhakdaman, Hamidreza 18 April 2012 (has links)
Increasing environmental concerns as well as diminishing fossil fuel reserves call for a new generation of energy conversion technologies. Fuel cells, which convert the chemical energy of a fuel directly to electrical energy, have been identified as one of the leading alternative energy conversion technologies. Fuel cells are more efficient than conventional heat engines with minimal pollutant emissions and superior scalability. Proton Exchange Membrane Fuel Cells (PEMFCs) which produce electricity from hydrogen have been widely investigated for transportation and stationary applications.
The focus of this study is on the Direct Propane Fuel Cell (DPFC), which belongs to the PEMFC family, but consumes propane instead of hydrogen as feedstock. A drawback associated with DPFCs is that the propane reaction rate is much slower than that of hydrogen. Two ideas were suggested to overcome this issue: (i) operating at high temperatures (150-230oC), and (ii) keeping the propane partial pressure at the maximum possible value. An electrolyte material composed of zirconium phosphate (ZrP) and polytetrafluoroethylene (PTFE) was suggested because it is an acceptable proton conductor at high temperatures. In order to keep the propane partial pressure at the maximum value, interdigitated flow-fields were chosen to distribute propane through the anode catalyst layer.
In order to evaluate the performance of a DPFC which operates at high temperature and uses interdigitated flow-fields, a computational approach was chosen. Computational Fluid Dynamics (CFD) was used to create two 2-D mathematical models for DPFCs based on differential conservation equations. Two different approaches were investigated to model species transport in the electrolyte phase of the anode and cathode catalyst layers and the membrane layer. In the first approach, the migration phenomenon was assumed to be the only mechanism of proton transport. However, both migration and diffusion phenomena were considered as mechanisms of species transport in the second approach. Therefore, Ohm's law was used in the first approach and concentrated solution theory (Generalized Stefan-Maxwell equations) was used for the second one. Both models are isothermal.
The models were solved numerically by implementing the partial differential equations and the boundary conditions in FreeFEM++ software which is based on Finite Element Methods. Programming in the C++ language was performed and the existing library of C++ classes and tools in FreeFEM++ were used. The final model contained 60 pages of original code, written specifically for this thesis.
The models were used to predict the performance of a DPFC with different operating conditions and equipment design parameters. The results showed that using a specific combination of interdigitated flow-fields, ZrP-PTFE electrolyte having a proton conductivity of 0.05 S/cm, and operating at 230oC and 1 atm produced a performance (polarization curve) that was (a) far superior to anything in the DPFC published literature, and (b) competitive with the performance of direct methanol fuel cells. In addition, it was equivalent to that of hydrogen fuel cells at low current densities (30 mA/cm2).
|
12 |
A Two Dimensional Model of a Direct Propane Fuel Cell with an Interdigitated Flow FieldKhakdaman, Hamidreza January 2012 (has links)
Increasing environmental concerns as well as diminishing fossil fuel reserves call for a new generation of energy conversion technologies. Fuel cells, which convert the chemical energy of a fuel directly to electrical energy, have been identified as one of the leading alternative energy conversion technologies. Fuel cells are more efficient than conventional heat engines with minimal pollutant emissions and superior scalability. Proton Exchange Membrane Fuel Cells (PEMFCs) which produce electricity from hydrogen have been widely investigated for transportation and stationary applications.
The focus of this study is on the Direct Propane Fuel Cell (DPFC), which belongs to the PEMFC family, but consumes propane instead of hydrogen as feedstock. A drawback associated with DPFCs is that the propane reaction rate is much slower than that of hydrogen. Two ideas were suggested to overcome this issue: (i) operating at high temperatures (150-230oC), and (ii) keeping the propane partial pressure at the maximum possible value. An electrolyte material composed of zirconium phosphate (ZrP) and polytetrafluoroethylene (PTFE) was suggested because it is an acceptable proton conductor at high temperatures. In order to keep the propane partial pressure at the maximum value, interdigitated flow-fields were chosen to distribute propane through the anode catalyst layer.
In order to evaluate the performance of a DPFC which operates at high temperature and uses interdigitated flow-fields, a computational approach was chosen. Computational Fluid Dynamics (CFD) was used to create two 2-D mathematical models for DPFCs based on differential conservation equations. Two different approaches were investigated to model species transport in the electrolyte phase of the anode and cathode catalyst layers and the membrane layer. In the first approach, the migration phenomenon was assumed to be the only mechanism of proton transport. However, both migration and diffusion phenomena were considered as mechanisms of species transport in the second approach. Therefore, Ohm's law was used in the first approach and concentrated solution theory (Generalized Stefan-Maxwell equations) was used for the second one. Both models are isothermal.
The models were solved numerically by implementing the partial differential equations and the boundary conditions in FreeFEM++ software which is based on Finite Element Methods. Programming in the C++ language was performed and the existing library of C++ classes and tools in FreeFEM++ were used. The final model contained 60 pages of original code, written specifically for this thesis.
The models were used to predict the performance of a DPFC with different operating conditions and equipment design parameters. The results showed that using a specific combination of interdigitated flow-fields, ZrP-PTFE electrolyte having a proton conductivity of 0.05 S/cm, and operating at 230oC and 1 atm produced a performance (polarization curve) that was (a) far superior to anything in the DPFC published literature, and (b) competitive with the performance of direct methanol fuel cells. In addition, it was equivalent to that of hydrogen fuel cells at low current densities (30 mA/cm2).
|
13 |
Méthodes d'éléments finis pour le problème de changement de phase en milieux composites / Finite element methods for the phase change problem in composite mediaMint brahim, Maimouna 30 November 2016 (has links)
Dans ces travaux de thèse on s’intéresse au développement d’un outil numérique pour résoudre le problème de conduction instationnaire avec changement de phase dans un milieu composite constitué d’une mousse de graphite infiltrée par un matériau à changement de phase tel que le sel, dans le contexte du stockage de l’énergie thermique solaire.Au chapitre 1, on commence par présenter le modèle sur lequel on va travailler. Il estséparé en trois sous-parties : un problème de conduction de chaleur dans la mousse, un problème de changement de phase dans les pores remplis de sel et une condition de résistance thermique de contact entre les deux matériaux qui est traduite par une discontinuité du champ de température.Au chapitre 2, on étudie le problème stationnaire de conduction thermique dans un milieu composite avec résistance de contact. Ceci permet de se focaliser sur la plus grande difficulté présente dans le problème qui est le traitement de la condition de saut à l’interface.Deux méthodes d’éléments finis sont proposées pour résoudre ce problème : une méthode basée sur les éléments finis Lagrange P1 et une méthode hybride-duale utilisant les éléments finis Raviart-Thomas d’ordre 0 et P0. L’analyse numérique des deux méthodes est effectuée et les résultats de tests numériques attestent des efficacités des deux méthodes [10]. Les matériaux à changement de phase qu’on étudie dans le cadre de cette thèse sont des matériaux pures, par conséquent le changement de phase s’effectue en une valeur de température fixe qui est la température de fusion. Ceci est modélisé par un saut dans la fonction fraction liquide et par conséquent dans la fonction enthalpie du matériau. Cette discontinuité représente une difficulté numérique supplémentaire qu’on propose de surmonter en introduisant un intervalle de régularisation autour de la température de fusion.Cette procédure est présentée dans le chapitre 3 où une étude analytique et numérique montre que l’erreur sur la température se comporte comme " en dehors de la zone de mélange, où " est la largeur de l’intervalle de régularisation. Cependant, à l’intérieur l’erreur se comporte comme p " et on montre que cette estimation est optimale. Cette diminution de vitesse de convergence est due à l’énergie qui reste bloquée dans la zone de mélange [58].Dans le chapitre 4 on présente quatre des schémas les plus utilisés pour le traitement de la non-linearité due au changement de phase: mise à jour du terme source, linéarisation de l’enthalpie, la capacité thermique apparente et le schéma de Chernoff. Différents tests numériques sont réalisés afin de tester et comparer ces quatre méthodes pour différents types de problèmes. Les résultats montrent que le schéma de linéarisation de l’enthalpie est le plus précis à chaque pas de temps tans dis que le schéma de la capacité thermique apparente donne de meilleurs résultats au bout d’un certain temps de calcul. Cela indique que si l’on s’intéresse aux états transitoires du matériaux le premier schéma est lemeilleur choix. Cependant, si l’on s’intéresse au comportement thermique asymptotique du matériau le second schéma est plus adapté. Les résultats montrent également que le schéma de Chernoff est le plus rapide parmi les quatre schémas en terme de temps de calcul et donne des résultats comparables à ceux des deux plus précis.Enfin, dans le chapitre 5 on utilise le schéma de Chernoff avec la méthode d’éléments finis hybride-duale Raviart-Thomas d’ordre 0 et P0 pour résoudre le problème non-linéaire de conduction thermique dans un milieu composite réel avec matériau à changement de phase. Le but étant de déterminer si un matériau composite avec une distribution uniforme de pores est assimilable à un matériau à changement de phase homogènes avec des propriétés thermo-physiques équivalentes. Pour toutes les expériences numériques exposées dans ce manuscrit on a utilisé le logiciel libre d’éléments finis FreeFem++ [41]. / In this thesis we aim to develop a numerical tool that allow to solve the unsteady heatconduction problem in a composite media with a graphite foam matrix infiltrated witha phase change material such as salt, in the framework of latent heat thermal energystorage.In chapter 1, we start by explaining the model that we are studying which is separated in three sub-parts : a heat conduction problem in the foam, a phase change problem in the pores of the foam which are filled with salt and a contact resistance condition at the interface between both materials which results in a jump in the temperature field.In chapter 2, we study the steady heat conduction problem in a composite media withcontact resistance. This allow to focus on the main difficulty here which is the treatment of the thermal contact resistance at the interface between the carbon foam and the salt. Two Finite element methods are proposed in order to solve this problem : a finite element method based on Lagrange P1 and a hybrid dual finite element method using the lowest order Raviart-Thomas elements for the heat flux and P0 for the temperature. The numerical analysis of both methods is conducted and numerical examples are given to assert the analytic results. The work presented in this chapter has been published in the Journal of Scientific Computing [10].The phase change materials that we study here are mainly pure materials and as a consequence the change in phase occurs at a single point, the melting temperature. This introduces a jump in the liquid fraction and consequently in the enthalpy. This discontinuity represents an additional numerical difficulty that we propose to overcome by introducing a smoothing interval around the melting temperature. This is explained in chapter 3 where an analytical and numerical study shows that the error on the temperature behaves like " outside of the mushy zone, where _ is the width of the smoothing interval. However, inside the error behaves like p " and we prove that this estimation is optimal due to the energy trapped in the mushy zone. This chapter has been published in Communications in Mathematical Sciences [58].The next step is to determine a suitable time discretization scheme that allow to handle the non-linearity introduced by the phase change. For this purpose we present in chapter 4 four of the most used numerical schemes to solve the non-linear phase change problem : the update source method, the enthalpy linearization method, the apparent heat capacity method and the Chernoff method. Various numerical tests are conducted in order to test and compare these methods for various types of problems. Results show that the enthalpy linearization is the most accurate at each time step while the apparent heat capacity gives better results after a given time. This indicates that if we are interestedin the transitory states the first scheme is the best choice. However, if we are interested in the asymptotic thermal behavior of the material the second scheme is better. Results also show that the Chernoff scheme is the fastest in term of calculation time and gives comparable results to the one given by the first two methods.Finally, in chapter 5 we use the Chernoff method combined with the hybrid-dual finiteelement method with P0 and the lowest order Raviart-Thomas elements to solve thenon-linear heat conduction problem in a realistic composite media with a phase change material. Numerical simulations are realised using 2D-cuts of X-ray images of two real graphite matrix foams infiltrated with a salt. The aim of these simulations is to determine if the studied composite materials could be assimilated to an equivalent homogeneous phase change material with equivalent thermo-physical properties. For all simulationsconducted in this work we used the free finite element software FreeFem++ [41].
|
14 |
Méthodes numériques avec des éléments finis adaptatifs pour la simulation de condensats de Bose-Einstein / Adaptive Finite-element Methods for the Numerical Simulation of Bose-Einstein CondensatesVergez, Guillaume 06 June 2017 (has links)
Le phénomène de condensation d’un gaz de bosons lorsqu’il est refroidi à zéro degrés Kelvin futdécrit par Einstein en 1925 en s’appuyant sur des travaux de Bose. Depuis lors, de nombreux physiciens,mathématiciens et numériciens se sont intéressés au condensat de Bose-Einstein et à son caractère superfluide. Nous proposons dans cette étude des méthodes numériques ainsi qu’un code informatique pour la simulation d’un condensat de Bose-Einstein en rotation. Le principal modèle mathématique décrivant ce phénomène physique est une équation de Schrödinger présentant une non-linéarité cubique,découverte en 1961 : l’équation de Gross-Pitaevskii (GP). En nous appuyant sur le logiciel FreeFem++,nous nous servons d’une discrétisation spatiale en éléments-finis pour résoudre numériquement cette équation. Une méthode d’adaptation du maillage à la solution et l’utilisation d’éléments-finis d’ordre deux nous permet de résoudre finement le problème et d’explorer des configurations complexes en deux ou trois dimensions d’espace. Pour sa version stationnaire, nous avons développé une méthode de gradient de Sobolev ou une méthode de point intérieur implémentée dans la librairie Ipopt. Pour sa version instationnaire, nous utilisons une méthode de Time-Splitting combinée à un schéma de Crank-Nicolson ou une méthode de relaxation. Afin d’étudier la stabilité dynamique et thermodynamique d’un état stationnaire, le modèle de Bogoliubov-de Gennes propose une linéarisation de l’équation de Gross-Pitaevskii autour de cet état. Nous avons élaboré une méthode permettant de résoudre ce système aux valeurs et vecteurs propres, basée sur un algorithme de Newton ainsi que sur la méthode d’Arnoldi implémentée dans la librairie Arpack. / The phenomenon of condensation of a boson gas when cooled to zero degrees Kelvin was described by Einstein in 1925 based on work by Bose. Since then, many physicists, mathematicians and digitizers have been interested in the Bose-Einstein condensate and its superfluidity. We propose in this study numerical methods as well as a computer code for the simulation of a rotating Bose-Einstein condensate.The main mathematical model describing this phenomenon is a Schrödinger equation with a cubic nonlinearity, discovered in 1961: the Gross-Pitaevskii (GP) equation. By using the software FreeFem++ and a finite elements spatial discretization we solve this equation numerically. The mesh adaptation to the solution and the use of finite elements of order two allow us to solve the problem finely and to explore complex configurations in two or three dimensions of space. For its stationary version, we have developed a Sobolev gradient method or an internal point method implemented in the Ipopt library. .For its unsteady version, we use a Time-Splitting method combined with a Crank-Nicolson scheme ora relaxation method. In order to study the dynamic and thermodynamic stability of a stationary state,the Bogoliubov-de Gennes model proposes a linearization of the Gross-Pitaevskii equation around this state. We have developed a method to solve this eigenvalues and eigenvector system, based on a Newton algorithm as well as the Arnoldi method implemented in the Arpack library.
|
15 |
Modélisation et simulation numérique de matériaux à changement de phase. / Numerical simulation and modelling of phase-change materialsRakotondrandisa, Aina 27 September 2019 (has links)
Nous développons dans ce travail de thèse un outil de simulation numérique pour les matériaux à changement de phase (MCP), en tenant compte du phénomène de convection naturelle dans la phase liquide, pour des configurations en deux et trois dimensions. Les équations de Navier-Stokes incompressible avec le modèle de Boussinesq pour la prise en compte des forces de flottabilité liées aux effets thermiques, couplées avec une formulation de l’équation d’énergie suivant la méthode d’enthalpie, sont résolues par une méthode d’éléments finis adaptatifs. Une approche mono-domaine, consistant à résoudre les mêmes systèmes d’équations dans les phases solide et liquide, est utilisée. La vitesse est ramenée à zéro dans la phase solide, en introduisant un terme de pénalisation dans l’équation de quantité de mouvement, suivant le modèle de Carman-Kozeny, consistant à freiner la vitesse à travers un milieu poreux. Une discrétisation spatiale des équations utilisant des éléments finis de Taylor-Hood, éléments finis P2 pour la vitesse et éléments finis P1 pour la pression, est appliquée, avec un schéma d’intégration en temps implicite d’ordre deux (GEAR). Le système d’équations non-linéaires est résolu par un algorithme de Newton. Les méthodes numériques sont implémentées avec le logiciel libre FreeFem++ (www.freefem.org), disponible pour tout système d’exploitation. Les programmes sont distribués sous forme de logiciel libre, sous la forme d’une forme de toolbox simple d’utilisation, permettant à l’utilisateur de rajouter d’autres configurations numériques pour des problèmes avecchangement de phase. Nous présentons dans ce manuscrit des cas de validation du code de calcul, en simulant des cas tests bien connus, présentés par ordre de difficulté croissant : convection naturelle de l’air, fusion d’un MCP, le cycle complet fusion-solidification, chauffage par le bas d’un MCP, et enfin, la solidification de l’eau. / In this thesis we develop a numerical simulation tool for computing two and three-dimensional liquid-solid phase-change systems involving natural convection. It consists of solving the incompressible Navier-Stokes equations with Boussinesq approximation for thermal effects combined with an enthalpy-porosity method for the phase-change modeling, using a finite elements method with mesh adaptivity. A single-domain approach is applied by solving the same set of equations over the whole domain. A Carman-Kozeny-type penalty term is added to the momentum equation to bring to zero the velocity in the solid phase through an artificial mushy region. Model equations are discretized using Galerkin triangular finite elements. Piecewise quadratic (P2) finite-elements are used for the velocity and piecewise linear (P1) for the pressure. The coupled system of equations is integrated in time using a second-order Gear scheme. Non-linearities are treated implicitly and the resulting discrete equations are solved using a Newton algorithm. The numerical method is implemented with the finite elements software FreeFem++ (www.freefem.org), available for all existing operating systems. The programs are written and distributed as an easy-to-use open-source toolbox, allowing the user to code new numerical algorithms for similar problems with phase-change. We present several validations, by simulating classical benchmark cases of increasing difficulty: natural convection of air, melting of a phase-change material, a melting-solidification cycle, a basal melting of a phase-change material, and finally, a water freezing case.
|
16 |
An Investigation of Low Temperature Direct Propane Fuel CellsParackal, Bhavana January 2017 (has links)
This research is directed toward the investigation of a low temperature direct propane fuel cell (DPFC). Modeling included a parametric study of a direct propane fuel cell using computational fluid dynamics (CFD), specifically FreeFem++ software. Polarization curves predicted by the CFD model were used to understand fuel cell performance. The predictions obtained from the computational fluid dynamics mathematical model for the fuel cell were compared with experimental results. The computational work identified some critical parameters (exchange current density, pressure, temperature) for improving the overall performance of the fuel cell. The model predictions clearly highlighted the role of catalysts in significantly enhancing the overall performance of a DPFC. Experiments were performed using commercial Nafion-Pt based membrane electrode assemblies (MEAs) to obtain a basis for comparison. It is the first report in the literature that a Pt-Ru (Platinum-Ruthenium) MEA was used in the investigation of a DPFC. Also, it was the first study that fed liquid water continuously to a DPFC by using interdigitated flow field (IDFF) at the anode to humidify the dry propane feed gas. During the experiments oscillations were observed at very low current densities i.e. in nA/cm2, which is a rare case and not reported in the literature to date. This observation has raised serious concerns about the existence of absolute open-circuit cell potential difference for a DPFC. The cycling behaviour observed with DPFC indicated the presence of a continuous degradation-regeneration process of the catalyst surface near open-circuit potential. The experimental work further evaluated the performance of fuel cell by measurement of polarization curves.
|
17 |
Méthodes d'ordre élevé et méthodes de décomposition de domaine efficaces pour les équations de Maxwell en régime harmonique / Efficient high order and domain decomposition methods for the time-harmonic Maxwell's equationsBonazzoli, Marcella 11 September 2017 (has links)
Les équations de Maxwell en régime harmonique comportent plusieurs difficultés lorsque la fréquence est élevée. On peut notamment citer le fait que leur formulation variationnelle n’est pas définie positive et l’effet de pollution qui oblige à utiliser des maillages très fins, ce qui rend problématique la construction de solveurs itératifs. Nous proposons une stratégie de solution précise et rapide, qui associe une discrétisation par des éléments finis d’ordre élevé à des préconditionneurs de type décomposition de domaine. La conception, l’implémentation et l’analyse des deux méthodes sont assez difficiles pour les équations de Maxwell. Les éléments finis adaptés à l’approximation du champ électrique sont les éléments finis H(rot)-conformes ou d’arête. Ici nous revisitons les degrés de liberté classiques définis par Nédélec, afin d’obtenir une expression plus pratique par rapport aux fonctions de base d’ordre élevé choisies. De plus, nous proposons une technique pour restaurer la dualité entre les fonctions de base et les degrés de liberté. Nous décrivons explicitement une stratégie d’implémentation qui a été appliquée dans le langage open source FreeFem++. Ensuite, nous nous concentrons sur les techniques de préconditionnement du système linéaire résultant de la discrétisation par éléments finis. Nous commençons par la validation numérique d’un préconditionneur à un niveau, de type Schwarz avec recouvrement, avec des conditions de transmission d’impédance entre les sous-domaines. Enfin, nous étudions comment des préconditionneurs à deux niveaux, analysés récemment pour l’équation de Helmholtz, se comportent pour les équations de Maxwell, des points de vue théorique et numérique. Nous appliquons ces méthodes à un problème à grande échelle qui découle de la modélisation d’un système d’imagerie micro-onde, pour la détection et le suivi des accidents vasculaires cérébraux. La précision et la vitesse de calcul sont essentielles dans cette application. / The time-harmonic Maxwell’s equations present several difficulties when the frequency is large, such as the sign-indefiniteness of the variational formulation, the pollution effect and the problematic construction of iterative solvers. We propose a precise and efficient solution strategy that couples high order finite element (FE) discretizations with domain decomposition (DD) preconditioners. High order FE methods make it possible for a given precision to reduce significantly the number of unknowns of the linear system to be solved. DD methods are then used as preconditioners for the iterative solver: the problem defined on the global domain is decomposed into smaller problems on subdomains, which can be solved concurrently and using robust direct solvers. The design, implementation and analysis of both these methods are particularly challenging for Maxwell’s equations. FEs suited for the approximation of the electric field are the curl-conforming or edge finite elements. Here, we revisit the classical degrees of freedom (dofs) defined by Nédélec to obtain a new more friendly expression in terms of the chosen high order basis functions. Moreover, we propose a general technique to restore duality between dofs and basis functions. We explicitly describe an implementation strategy, which we embedded in the open source language FreeFem++. Then we focus on the preconditioning of the linear system, starting with a numerical validation of a one-level overlapping Schwarz preconditioner, with impedance transmission conditions between subdomains. Finally, we investigate how two-level preconditioners recently analyzed for the Helmholtz equation work in the Maxwell case, both from the theoretical and numerical points of view. We apply these methods to the large scale problem arising from the modeling of a microwave imaging system, for the detection and monitoring of brain strokes. In this application accuracy and computing speed are indeed of paramount importance.
|
Page generated in 0.0269 seconds