• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 101
  • 31
  • 6
  • 5
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 179
  • 179
  • 91
  • 23
  • 23
  • 22
  • 20
  • 20
  • 16
  • 16
  • 16
  • 14
  • 14
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

The impact of frequency modulation (FM) system use and caregiver training on young children with hearing impairment in a noisy listening environment

Nguyen, Huong Thi Thien 01 July 2011 (has links)
The two objectives of this single-subject study were to assess how an FM system use impacts parent-child interaction in a noisy listening environment, and how a parent/caregiver training affect the interaction between parent/caregiver and child. Two 5-year-old children with hearing loss and their parent/caregiver participated. Experiement 1 was conducted using an alternating design measured three communication behaviors (e.g., child's vocalization, parent/caregiver's initiation, and parent/caregiver's response) across four listening conditions (e.g., HA+Quiet, HA+Noise, FM+Quiet, and FM+Noise). Experiment 2 was conducted using a comparison within and between conditions to re-measure the communicative behaviors across the listening conditions after the parent/caregiver training. Findings of this study point to three major conclusions. First, FM system use (i.e., FM-only mode) facilitated FM01 child's ability to maintain same level of interaction in a noisy as good as in a quiet environment. Second, parent/caregiver training enhanced the impact of FM system use for one child (FM01), although parent/caregiver initiation increased for both. Third, it is important to verify the function of both FM system and HA microphones to ensure access to FM advantage.
132

A Conceptual Evaluation Of Frequency Diverse Arrays And Novel Utilization Of Lfmcw

Eker, Taylan 01 September 2011 (has links) (PDF)
Phased array based systems have extending applications in electronic warfare, radio astronomy, civilian applications with technological advancements. The main virtue offered by these systems is the creation of agile beams with utilization of phase shifting or delay elements. In fact, the desire for flexible steering comes with a cost. Frequency Diverse Array (FDA) concept is another approach to beam steering problem. In this context, the subsequent antenna elements are fed with stepped discrete frequencies causing continuous scanning of space in time. So a range-angle dependent scanning is made possible. Also the diversity of waveforms between the antennas is another area of research especially in Moving Target Indicator (MTI) applications. Although several implementation schemes were proposed, the costs and the non-ideal behavior of building blocks make the schemes hard to implement. During this study, a new implementation scheme is proposed where a Linear Frequency Modulated Continuous Wave (LFMCW, Linear FMCW) source is used for feeding a special beam forming network, where the subsequent outputs of the beam forming network have uniform delays. The dynamic behavior of the source and the uniform (or non-uniform) delay provided by the beam forming network create the required frequency steps between antenna elements as described in conventional FDA. So, the implementation of FDA concept requires just the design of the source, beam forming network and the antenna array. Throughout the study, mathematical analysis of both conventional FDA and the LFMCW based FDA is made and various implementations are realized. Justification of the mathematical derivations is made by the results of the measurements with the implemented structures. Besides, analysis and simulation of the array in a radar environment with various scenarios are performed. The drawbacks and the proposals for overcoming these drawbacks are also reported during the analysis, which will be useful for future studies on the subject.
133

Highly efficient supply modulator for mobile communication systems

Kim, Eung Jung 20 May 2011 (has links)
Switching frequency modulation techniques, an inductor current sensing circuit for fast switching converter, and a dual converter are proposed, and the simulation results and experimental results are drawn. The experimental results for monotonic and pseudo-random modulation techniques show that the switching noise peak was effectively reduced as much as -19 dBc. The inductor current sensing circuit accurately tracks the output current of the switching converter that switches up to 30MHz. This current sensing circuit is used to drive the slow converter in the dual converter. The dual converter consists of a fast converter and a slow converter. The fast converter provides only the high frequency conponents in the output current, and the slow converter provides the majority portion of the output current with a higher efficiency. Therefore, the dual converter can have a fast transient response without sacrificing its efficiency. All chips are fabricated in a standard CMOS 0.18um process.
134

Quantum cascade lasers based on intra-cavity frequency mixing

Jang, Min 30 January 2013 (has links)
Quantum cascade lasers (QCLs) operate due to population inversion on intersubband in unipolar mutiple-quantum-well (MQW) heterostructure. QCLs are considered one of the most flexible and powerful light semiconductor sources in the mid- and far-infrared (IR) wavelength range, covering most of the critical spectral regions relevant to IR applications. InGaAs/InAlAs/InP QCLs are the only semiconductor lasers capable of continuous wave (CW) operation at room temperature (RT) in the spectral range 3.4-12 micron. This dissertation details the development of RT QCLs based on passive nonlinear coupled-quantum-well structures monolithically integrated into mid-IR QCLs to provide a giant nonlinear response for the pumping frequency. The primary focus of short-wavelength approach in this dissertation is to develop of RT InGaAs/InAlAs/InP QCLs for lamda=2.5-3.7 micron region, based on quasi-phase-matched intracavity second harmonic generation (SHG) associated with intersubband transition. Intersubband optical transition can be engineered by the choice of quantum well and barrier thicknesses to provide the appropriate energy levels, optical dipole matrix elements, and electron scattering rates amongst other parameters. Thus, aside from their linear optical properties, resonant intersubband transitions in coupled QW's can also be designed to produce nonlinear optical medium with giant nonlinear optical susceptibilities. In long-wavelength region, at high temperature, the population inversion is reduced between the upper and lower laser levels due to the longitudinal optical (LO) phonon scattering of thermal carriers in the upper laser state and the thermal backfilling of carriers into the lower laser level from the injector state. This dissertation aims to improve an alternative approach for THz QCL sources based on intra-cavity difference frequency generation (DFG) in dual-wavelength mid-IR QCLs with a passive nonlinear structure, designed for giant optical nonlinearity. Further studies describe that Cerenkov DFG scheme allows for extraction of THz radiation along the whole length of the laser waveguide and provides directional THz emission in 1.2-4.5 THz range. An important requirement for many applications, like chemical sensing and molecular spectroscopy, is single-mode emission. We demonstrate single-mode RT DFG THz QCLs operation in 1-5 THz region by employing devices as integrated dual-period DFB lasers, where efficient solid state RT sources do not exist. / text
135

Target Detection By The Ambiguity Function Technique And The Conventional Fourier Transform Technique In Frequency Coded Continuous Wave Radars

Akangol, Mehmet 01 December 2005 (has links) (PDF)
Continuous Wave (CW) radars are preferred for their low probability of intercept by the other receivers. Frequency modulation techniques, the linear frequency modulation (LFM) technique in particular, are commonly used in CW radars to resolve the range and the radial velocity of the detected targets. The conventional method for target detection in a linear FMCW radar makes use of a mixer followed by a low-pass filter whose output is Fourier transformed to get the range and velocity information. In this thesis, an alternative target detection technique based on the use of the Ambiguity Function (AF) will be investigated in frequency modulated CW radars. Results of the AF-based technique and the conventional Fourier-based technique will be compared for different target detection scenarios.
136

Radar Signal Processing for Radio Altimeter / Radar Signal Processing for Radio Altimeter

Krasňanský, Milan January 2017 (has links)
Táto diplomová práca sa zaoberá návrhom a implementáciou algoritmu pre spracovaniu signálu z radaru využívajúceho frekvenčne modulovanú kontinuálnu vlnu. Cieľom je implementácia algoritmu, ktorý by bol dostatočne rýchly (výpočet v reálnom čase na cieľovej platforme) a dostatočne presný pre použitie v rádiovýškomere v ľahkom lietadle so zameraním na použitie počas pristávacieho manévru. Hlavnou metódou spracovania signálu, použitou v implementácii, je Diskrétna Fourierova transformácia. Vytvorený algoritmus bol otestovaný na reálnych letových dátach a pre pristávací manéver dosiahol uspokojivé výsledky.
137

Optické pojítko / Optical connection

Horák, Jaroslav January 2009 (has links)
Master's thesis treat of optical connection. The aim of this work was also the practical implementation and successful testing. Communications signal is low frequency in the range of 20 to 15 kHz and intended length of the coupling is approximately 200 m. The first is the work carried out theoretical analysis issues. Then is described the design and implementation of its own facility. In conclusion, the measurement is done and evaluate the parameters. I have dealt the optical connection with using a laser beam that is modulated frequency modulation. This optical signal is converted in the receiver using a PIN photodiode (type PIN) back to the electrical signal. Then there is the demodulation and amplification. The frequency modulator and demodulator is phase lock loop. It realizes the type of circuit CMOS 4046. The work is designed properly functioning equipment. It serves for the transmission of speech and audio signal line. It has good properties that match the criteria. The connection can be used outdoors due to the use of cover. The scope of communication may be even greater than 200 meters
138

Pulse Frequency Modulation Zcs Flyback Converter In Inverter Applications

Tian, Feng 01 January 2009 (has links)
Renewable energy source plays an important role in energy co-generation and distribution. A traditional solar-based inverter system has two stages cascaded, which has simpler controller but low efficiency. A new solar-based single-stage grid-connected inverter system can achieve higher efficiency by reducing the power semiconductor switching loss and output stable and synchronizing sinusoid current into the utility grid. In Chapter 1, the characteristic I-V and P-V curve of PV array has been illustrated. Based on prediction of the PV power capacity installed on the grid-connected and off-grid, the trends of grid-tied inverter for DG system have been analyzed. In Chapter 2, the topologies of single-phase grid-connect inverter system have been listed and compared. The key parameters of all these topologies are listed in a table in terms of topology, power decoupling, isolation, bi-directional/uni-directional, power rating, switching frequency, efficiency and input voltage. In Chapter 3, to reduce the capacitance of input filter, an active filter has been proposed, which will eliminate the 120/100Hz low frequency ripple from the PV array's output voltage completely. A feedforward controller is proposed to optimize the step response of PV array output voltage. A sample and hold also is used to provide the 120/100Hz low frequency decoupling between the controller of active filter and inverter stage. In Chapter 4, the single-stage inverter is proposed. Compared with conventional two-stage inverter, which has two high frequency switching stages cascaded, the single-stage inverter system increases the system efficiency by utilizing DC/DC converter to generate rectified sinusoid voltage. A transformer analysis is conducted for the single-stage inverter system, which proves the transformer has no low-frequency magnetic flux bias. To apply peak current mode control on single-stage inverter and get unified loop gain, adaptive slope compensation is also proposed for single-stage inverter. In Chapter 5, a digital controller for single-stage inverter is designed and optimized by the Matlab Control Toolbox. A Psim simulation verified the performance of the digital controller design. In Chapter 6, three bi-directional single-stage inverter topologies are proposed and compared. A conventional single-stage bi-directional inverter has certain shortcoming that cannot be overcome. A modular grid-connect micro-inverter system with dedicated reactive energy processing unit can overcome certain shortcoming and increase the system efficiency and reliability. A unique controller design is also proposed. In Chapter 7, a PFM ZCS flyback inverter system is invented. By using half-wave quasi-resonant ZCS flyback resonant converter and PFM control, this topology completely eliminates switching loss. A detailed mathematical analysis provides all the key parameters for the inverter design. As the inductance of transformer secondary side get smaller, the power stage transfer function of PFM ZCS flyback inverter system demonstrates nonlinearity. An optimized PFM ZCS flyback DC/DC converter design resolves this issue by introducing a MOSFET on the secondary side of transformer. In Chapter 8, experimental results of uni-direcitonal single-stage inverter with grid-connection, bi-directional single-stage inverter and single-stage PFM ZCS flyback inverter have been provided. Conclusions are given in Chapter 9.
139

A Constant ON-Time 3-Level Buck Converter for Low Power Applications

Cassidy, Brian Michael 22 April 2015 (has links)
Smart cameras operate mostly in sleep mode, which is light load for power supplies. Typical buck converter applications have low efficiency under the light load condition, primarily from their power stage and control being optimized for heavy load. The battery life of a smart camera can be extended through improvement of the light load efficiency of the buck converter. This thesis research investigated the first stage converter of a car black box to provide power to a microprocessor, camera, and several other peripherals. The input voltage of the converter is 12 V, and the output voltage is 5 V with the load range being 20 mA (100 mW) to 1000 mA (5000 mW). The primary design objective of the converter is to improve light load efficiency. A 3-level buck converter and its control scheme proposed by Reusch were adopted for the converter in this thesis. A 3-level buck converter has two more MOSFETs and one more capacitor than a synchronous buck converter. Q1 and Q2 are considered the top MOSFETs, while Q3 and Q4 are the synchronous ones. The extra capacitor is used as a second power source to supply the load, which is connected between the source of Q1 and the drain of Q2 and the source of Q3 and the drain of Q4. The methods considered to improve light load efficiency are: PFM (pulse frequency modulation) control scheme with DCM (discontinuous conduction mode) and use of Schottky diodes in lieu of the synchronous MOSFETs, Q3 and Q4. The 3-level buck converter operates in CCM for heavy load above 330 mA and DCM for light load below 330 mA. The first method uses a COT (constant on-time) valley current mode controller that has a built in inductor current zero-crossing detector. COT is used to implement PFM, while the zero-crossing detector allows for DCM. The increase in efficiency comes from reducing the switching frequency as the load decreases by minimizing switching and gate driving loss. The second method uses an external current sense amplifier and a comparator to detect when to shut down the gate drivers for Q3 and Q4. Schottky diodes in parallel with Q3 and Q4 carry the load current when the MOSFETs are off. This increases the efficiency through a reduction in switching loss, gate driving loss, and gate driver power consumption. The proposed converter is prototyped using discrete components. LTC3833 is used as the COT valley current mode controller, which is the center of the control scheme. The efficiency of the 3-level buck converter was measured and ranges from 82% to 95% at 100 mW and 5000 mW, respectively. The transient response of the converter shows no overshoot due to a 500 mA load step up or down, and the output voltage ripple is 30 mV. The majority of the loss comes from the external components, which include a D FF (D flip-flop), AND gate, OR gate, current sense chip, comparator, and four gate drivers. The proposed converter was compared to two off-the-shelf synchronous buck converters. The proposed converter has good efficiency and performance when compared to the other converters, despite the fact that the converter is realized using discrete components. / Master of Science
140

Study of fade and inter-fade durations in Ku- and Ka- band frequencies using OLYMPUS satellite beacons

Ajaz, Haroon 04 December 2009 (has links)
Fade and inter-fade duration data obtained from the three beacons at 12, 20, and 30 GHz aboard the OLYMPUS satellite were analyzed. The different types of signal impairments and their causes were highlighted and a literature survey conducted. Twelve months of fade and inter-fade data were analyzed and the results of these statistics are presented in the form of tables and figures. The analysis was done on both the monthly and annual data. These tables and figures show that at the higher fade levels, the number of fade events and the fade time is smaller than at the lower thresholds. For the same fade level the number of fade events and the fade time goes down as the fade duration which it exceeds is increased. Inter-fade durations also showed similar results. The fades exhibited seasonal dependencies. The number of fades (and consequently the fade time) were much higher for the months of May through August and for the months of March and December. The other months showed very little fade activity. A model was also constructed that can predict the fade time as a function of frequency, attenuation level, and fade duration interval. The predicted fade times agree well with the measured fade duration data. An alternate simplified version of the model is also presented. / Master of Science

Page generated in 0.0935 seconds