• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 33
  • 13
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 56
  • 56
  • 56
  • 33
  • 31
  • 31
  • 14
  • 13
  • 12
  • 11
  • 9
  • 8
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Bifurcations of Periodic Solutions of Functional Differential Equations with Spatio-Temporal Symmetries

Collera, JUANCHO 30 April 2012 (has links)
We study bifurcations of periodic solutions with spatio-temporal symmetries of functional differential equations (FDEs). The two main results are: (1) a centre manifold reduction around a periodic solution of FDEs with spatio-temporal symmetries, and (2) symmetry-breaking bifurcations for symmetric rings of delay-coupled lasers. For the case of ODEs, symmetry-breaking bifurcations from periodic solutions has already been studied. We extend this result to the case of symmetric FDEs using a Centre Manifold Theorem for symmetric FDEs which reduces FDEs into ODEs on an integral manifold around a periodic solution. We show that the integral manifold is invariant under the spatio-temporal symmetries which guarantees that the symmetry structure of the system of FDEs is preserved by this reduction. We also consider a problem in rings of delay-coupled lasers modeled using the Lang-Kobayashi rate equations. We classify the symmetry of bifurcating branches of solutions from steady-state and Hopf bifurcations that occur in 3-laser systems. This involves finding isotropy subgroups of the symmetry group of the system, and then using the Equivariant Branching Lemma and the Equivariant Hopf Theorem. We then utilize this result to find the bifurcating branches of solutions in DDE-Biftool. Symmetry often causes eigenvalues to have multiplicity, and in some cases, this could lead DDE-Biftool to incorrectly predict the bifurcation points. We address this issue by developing a method of finding bifurcation points which can be used for the general case of n-laser systems with unidirectional and bidirectional coupling. / Thesis (Ph.D, Mathematics & Statistics) -- Queen's University, 2012-04-30 11:25:01.011
22

Controlabilidade para sistemas de equações diferenciais

Andrade, Fernando Gomes de [UNESP] 21 March 2014 (has links) (PDF)
Made available in DSpace on 2015-03-03T11:52:20Z (GMT). No. of bitstreams: 0 Previous issue date: 2014-03-21Bitstream added on 2015-03-03T12:07:29Z : No. of bitstreams: 1 000807686.pdf: 640594 bytes, checksum: 5f03868558021011a2c766ab0ec3808c (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Esta dissertaçãoé um estudo sobre a controlabilidade de sistemas de controle descritos por equações diferenciais abstratas. Primeiramente, são apresentados alguns resultados de controlabilidade para sistemas lineares e sem retardo. Em seguida, é estabelecido um critério para a controlabilidade aproximada de sistemas lineares com retardo, através da comparação entre o conjunto atingível destes sistemas com o conjunto atingível dos sistemas sem retardo. Por fim, é apresentada uma generalização do resultado anterior para sistemas do tipo neutro com retardo / This dissertation is a study on the controllability of control systems described by abstract differential equations. First, some results of controllability for linear systems without delay are presented. Then, a criterion for the approximate controllability of linear systems with delay is established by comparing the reachable set of these systems with the reachable set of the systems without delay. Finally, a generalization of the previous result for systems of neutral type with delay is presented
23

Controlabilidade e estabilização de sistemas de controle hereditários distribuídos lineares a tempo-variando / Controllability and stabilizability of linear time-varying distributed hereditary control systems

Andréa Cristina Prokopczyk Arita 20 May 2009 (has links)
Neste trabalho estudamos a controlabilidade e a estabilização de certos tipos de sistemas com retardo. Obtemos um resultado de estabilização para sistema com retardo periódicos e um resultado que nos permite concluir a controlabilidade do sistema com retardo baseado na controlabilidade do mesmo sistema porém, sem retardo. Apresentamos a equação do calor como exemplo / In this work we study controllability and stabilizability of a type of delayed systems. We get a stabilization result for delayed periodic systems and we get a result that allow us to conclude the controllability of the delayed system based on the controllability of the same system without delay. We present the heat equation like example
24

Estabilidade e oscilação de soluções de equações diferenciais com retardos e impulsos / Stability and oscillation for solutions of differential equations with delays and impulses

Luciene Parron Gimenes 07 March 2007 (has links)
O objetivo deste trabalho é investigar propriedades qualitativas de certas equações diferenciais funcionais retardadas de segunda ordem quando lhes são impostos controles de impulsos adequados. Os principais resultados dizem respeito a estabilidade e oscilação por impulsos. Mais especificamente, consideramos algumas equações e provamos que suas soluções triviais podem ser estabilizadas por impulsos. Em seguida, consideramos uma destas equações e provamos que suas soluções podem se tornar oscilatórias com a imposição apropriada de controles de impulsos. Apresentamos alguns exemplos que ilustram nossos resultados. Além do objetivo acima, procuramos produzir um texto que compreendesse a teoria fundamental das equações diferenciais funcionais retardadas impulsivas, teoria esta que, até então, não podia ser encontrada num único texto como este. Desenvolvemos e discutimos existência, unicidade, continuação de soluções, intervalo maximal de existência e dependência contínua de soluções dos valores iniciais para equações diferenciais retardadas impulsivas. / The purpose of this work is to investigate qualitative properties of certain second order delay differential equations when some proper impulse controls are added to them. The main results concern the stability and scillation by impulses. More specifically, we consider some equations and prove that their trivial solutions can be stabilized by impulses. We also consider one of these equations and prove that all solutions oscillate when proper impulse controls are imposed. We give some examples to illustrate our results. Because dealing with systems with both delays and impulses is a recent interest of some mathematicians we also considered producing a text that would encompass the fundamental theory of retarded functional differential equations with impulses. Up to now such theory could not be found in a single text as this one. Therefore we discuss and develop basic aspects of the theory as existence, uniqueness, continuability of solutions, maximal interval of existence and continuous dependence of solutions on initial values for impulsive retarded differential equations.
25

Estudo sobre existência de soluções e oscilação para equações diferenciais funcionais com retardamento /

Souza, Kleber de Santana January 2019 (has links)
Orientador: Marta Cilene Gadotti / Resumo: Este trabalho tem por objetivo o estudo da teoria básica sobre as Equações Diferenciais Funcionais com Retardamento. Enunciaremos e provaremos os resultados clássicos sobre existência e unicidade de solução. E iremos estudar a existência de soluções oscilatórias para equações autônomas escalares. / Abstract: This paper aims to study the basic theory about the Delay Differential Equations. We will enunciate and prove the classic results on existence and uniqueness of solution. And we will study the existence of oscillatory solutions for scalar autonomous equations. / Mestre
26

Numerical approximation and identification problems for singular neutral equations

Cerezo, Graciela M. 05 September 2009 (has links)
A collocation technique in non-polynomial spline space is presented to approximate solutions of singular neutral functional differential equations (SNFDEs). Using solution representations and general well-posedness results for SNFDEs convergence of the method is shown for a large class of initial data including the case of discontinuous initial function. Using this technique, an identification problem is solved for a particular SNFDE. The technique is also applied to other different examples. Even for the special case in which the initial data is a discontinuous function the identification problem is successfully solved. / Master of Science
27

Modeling and Approximation of Nonlinear Dynamics of Flapping Flight

Dadashi, Shirin 19 June 2017 (has links)
The first and most imperative step when designing a biologically inspired robot is to identify the underlying mechanics of the system or animal of interest. It is most common, perhaps, that this process generates a set of coupled nonlinear ordinary or partial differential equations. For this class of systems, the models derived from morphology of the skeleton are usually very high dimensional, nonlinear, and complex. This is particularly true if joint and link flexibility are included in the model. In addition to complexities that arise from morphology of the animal, some of the external forces that influence the dynamics of animal motion are very hard to model. A very well-established example of these forces is the unsteady aerodynamic forces applied to the wings and the body of insects, birds, and bats. These forces result from the interaction of the flapping motion of the wing and the surround- ing air. These forces generate lift and drag during flapping flight regime. As a result, they play a significant role in the description of the physics that underlies such systems. In this research we focus on dynamic and kinematic models that govern the motion of ground based robots that emulate flapping flight. The restriction to ground based biologically inspired robotic systems is predicated on two observations. First, it has become increasingly popular to design and fabricate bio-inspired robots for wind tunnel studies. Second, by restricting the robotic systems to be anchored in an inertial frame, the robotic equations of motion are well understood, and we can focus attention on flapping wing aerodynamics for such nonlinear systems. We study nonlinear modeling, identification, and control problems that feature the above complexities. This document summarizes research progress and plans that focuses on two key aspects of modeling, identification, and control of nonlinear dynamics associated with flapping flight. / Ph. D. / In this work we focus on modeling flapping flight mechanics by focusing our attention in two aspects of modeling. We first model the behavior of aerodynamic forces in charge of keeping the flying animal airborn. We present a mathematical model for history dependent profile of these forces. Also, we propose a novel adaptive controller to compensate these unknown forces in the dynamic model of the system. We also propose an algorithm to derive dynamic equations of the animal motion by using video data. We expect the model derived by this novel method to emulate the animal motion closely.
28

Well-posedness questions and approximation schemes for a general class of functional differential equations

Turi, János January 1986 (has links)
In this paper we consider approximation schemes and questions of well-posedness for a general class of functional differential equations of neutral-type (NFDE) where the difference operator does not have an atom at zero. Equations of this type occur in the modeling of certain aeroelastic control problems and include many singular integro-differential equations. We obtain general necessary and sufficient conditions for the well-posedness of functional differential equations of neutral-type on the Banach-spaces R<sup>n</sup>xL<sub>p</sub>. As an example of the well-posedness of the non-atomic NFDE-system that arises in the study of aeroelasticity is established on R<sup>n</sup>xL<sub>p</sub>, 1≤p<2. Employing the equivalence between generalized solutions of NFDEs and mild solutions of the “corresponding” abstract Cauchy-problems, we make use of general approximation results for well-posed Cauchy-problems to establish and analyze the convergence of the “averaging projection” scheme on the Banach spaces R<sup>n</sup>xL<sub>p</sub>, 1<p<∞, for a class of problems with atomic difference operators. / Ph. D.
29

Equações diferenciais funcionais com retardamento e impulsos em tempo variável via equações diferenciais ordinárias generalizadas / Retarded functional differential equations with variable impulses via generalized ordinary differential equations

Afonso, Suzete Maria Silva 15 February 2011 (has links)
O objetivo deste trabalho é investigar propriedades qualitativas das soluções de equações diferenciais funcionais com retardamento e impulsos em tempo variável (EDFRs impulsivas) através da teoria de equações diferenciais ordinárias generalizadas (EDOs generalizadas). Nossos principais resultados dizem respeito a estabilidade uniforme, estabilidade uniforme assintótica e estabilidade exponencial da solução trivial de uma determinada classe de EDFRs com impulsos em tempo variável e limitação uniforme de soluções da mesma classe. A fim de obtermos tais resultados para EDFRs com impulsos em tempo variável, estabelecemos novos resultados sobre propriedades qualitativas das soluções de EDOs generalizadas. Assim, portanto, este trabalho contribui para o desenvolvimento de ambas as teorias de EDFRs com impulsos e de EDOs generalizadas. Os resultados novos apresentados neste trabalho estão contidos nos artigos [1], [2] e [3] / The purpose of this work is to investigate qualitative properties of solutions of retarded functional differential equations (RFDEs) with impulse effects acting on variable times using the theory of generalized ordinary differential equations (generalized ODEs). Our main results concern uniform stability, uniform asymptotic stability and exponential stability of the trivial solution of a certain class of RFDEs with variable impulses and uniform boundedness of the solutions of the same class. In order to obtain such results for RFDEs with variable impulses, we establish new results about qualitative properties of solutions of generalized ODEs. In this manner, we contribute with new results not only to the theory of RFDEs with impulses but also to the theory of generalized ODEs. The new results presented in this work are contained in the articles [1], [2] and [3]
30

Equações diferenciais funcionais com retardamento e impulsos em tempo variável via equações diferenciais ordinárias generalizadas / Retarded functional differential equations with variable impulses via generalized ordinary differential equations

Suzete Maria Silva Afonso 15 February 2011 (has links)
O objetivo deste trabalho é investigar propriedades qualitativas das soluções de equações diferenciais funcionais com retardamento e impulsos em tempo variável (EDFRs impulsivas) através da teoria de equações diferenciais ordinárias generalizadas (EDOs generalizadas). Nossos principais resultados dizem respeito a estabilidade uniforme, estabilidade uniforme assintótica e estabilidade exponencial da solução trivial de uma determinada classe de EDFRs com impulsos em tempo variável e limitação uniforme de soluções da mesma classe. A fim de obtermos tais resultados para EDFRs com impulsos em tempo variável, estabelecemos novos resultados sobre propriedades qualitativas das soluções de EDOs generalizadas. Assim, portanto, este trabalho contribui para o desenvolvimento de ambas as teorias de EDFRs com impulsos e de EDOs generalizadas. Os resultados novos apresentados neste trabalho estão contidos nos artigos [1], [2] e [3] / The purpose of this work is to investigate qualitative properties of solutions of retarded functional differential equations (RFDEs) with impulse effects acting on variable times using the theory of generalized ordinary differential equations (generalized ODEs). Our main results concern uniform stability, uniform asymptotic stability and exponential stability of the trivial solution of a certain class of RFDEs with variable impulses and uniform boundedness of the solutions of the same class. In order to obtain such results for RFDEs with variable impulses, we establish new results about qualitative properties of solutions of generalized ODEs. In this manner, we contribute with new results not only to the theory of RFDEs with impulses but also to the theory of generalized ODEs. The new results presented in this work are contained in the articles [1], [2] and [3]

Page generated in 0.1817 seconds