Spelling suggestions: "subject:"fuzzy 2metric space"" "subject:"fuzzy 2metric apace""
1 |
Fuzzy metric spaces and applications to perceptual colour-differencesMiñana Prats, Juan José 21 May 2015 (has links)
Tesis por compendio / [EN] Fuzzy mathematics has constituted a wide field of research, since L. A. Zadeh introduced in 1965 the concept of fuzzy set. In particular, the problem of constructing a satisfactory theory of fuzzy metric spaces has been investigated by several authors. In 1994, George and Veeramani introduced and studied a notion of fuzzy metric space that constituted a modification of the one given by Kramosil and Michalek. Several authors have contributed to the study of this kind of fuzzy metrics, from the mathematical point of view and for their applications. In this thesis we have contributed to develop the study of these fuzzy metrics, from the mathematical point of view, and we approached the problem of measuring perceptual colour-difference between samples of colour using one of these fuzzy metrics.
The contributions of the study carried out in this thesis is summarized as follows:
\begin{enumerate}
\item[(i)] We have made a detailed study of the fuzzy metric space $(X,M,\cdot)$ where $M$ is given on $X=[0,\infty[$ by $M(x,y,t)=\frac{\min\{x,y\}+t}{\max\{x,y\}+t}$ and others related to it. As a consequence we have introduced five questions in fuzzy metrics related to continuity, extension, contractivity and completion.
\item[(ii)] We have answered an open question constructing a fuzzy metric space $(X,M,\ast)$ in which the assignment $f(t)=\lim_n M(a_n,b_n,t)$, where $\{a_n\}$ and $\{b_n\}$ are $M$-Cauchy sequences in $X$, is not a continuous function on $t$. The response to this question has allowed us to characterize the class of completable strong fuzzy metric spaces.
\item[(iii)] We have introduced and studied a stronger concept than convergence of sequences in fuzzy metric spaces, which we call $s$-convergence. In our study, we have gotten a characterization of those spaces in which every convergent sequence is $s$-convergent and we have given a classification of fuzzy metrics attending to the behaviour of the fuzzy metric with respect to the different types of convergence.
\item[(iv)] We have studied, in the context of fuzzy metric spaces, when certain families of open balls centered at a point are local bases for this point.
\item[(v)] We have answered two open questions related to standard convergence, a stronger concept than convergence of sequences in fuzzy metric spaces, introduced in a natural way attending to the concept of standard Cauchy sequence (introduced in \cite{adomain}). These responses have led us to establish conditions under which Cauchyness and convergence should be considered \textit{compatible}.
\item[(vi)] As a practical application, we have shown that a certain fuzzy metric is useful for measuring perceptual colour-differences between colour samples.
\end{enumerate} / [ES] La matemática fuzzy ha constituido un amplio campo en la investigación, desde que en 1965 L. A. Zadeh introdujo el concepto de conjunto fuzzy. En particular, la construcción de una teoría satisfactoria de espacios métricos fuzzy ha sido un problema investigado por muchos autores. En 1994, George y Veeramani introdujeron y estudiaron una noción de espacio métrico fuzzy que constituía una modificación de la anteriormente dada por Kramosil y Michalek. Muchos autores han contribuido al estudio de este tipo de métricas fuzzy, desde el punto de vista matemático y de sus aplicaciones. En esta tesis hemos contribuido al desarrollo del estudio de estas métricas fuzzy, desde el punto de vista matemático, y hemos abordado el problema de la medida de la diferencia perceptual de color utilizando una de estas métricas.
Las contribuciones que aportamos en esta tesis a dicho estudio, se resumen a continuación:
\begin{enumerate}
\item[(i)] Hemos hecho un estudio detallado del espacio métrico fuzzy $(X,M,\cdot)$ donde $M$ está dada sobre $[0,\infty[$ por la expresión $M(x,y,t)=\frac{\min\{x,y\}+t}{\max\{x,y\}+t}$ y de otros espacios métricos fuzzy relacionados con el. Como consecuencia de este estudio hemos introducido cinco cuestiones en la teoría de las métricas fuzzy relacionadas con continuidad, extensión, contractividad y completación.
\item[(ii)] Hemos respondido a una cuestión abierta construyendo un espacio métrico fuzzy $(X,M,\ast)$ en el cual la asignación $f(t)=\lim_n M(a_n,b_n,t)$, donde $\{a_n\}$ y $\{b_n\}$ son sucesiones $M$-Cauchy, no es una función continua sobre $t$. La respuesta a esta cuestión nos ha permitido caracterizar la clase de los espacios métricos fuzzy strong completables.
\item[(iii)] Hemos introducido y estudiado un concepto más fuerte que el de convergencia de sucesiones en espacios métricos fuzzy, al que hemos llamado $s$-convergencia. En nuestro estudio hemos conseguido una caracterización de aquellos espacios métricos fuzzy en los cuales toda sucesión convergente es $s$-convergente y hemos dado una clasificación de los espacios métricos fuzzy atendiendo a su comportamiento con respecto a los diferentes tipos de convergencia que se da en él.
\item[(iv)] Hemos estudiado, en el contexto de los espacios métricos fuzzy, cuando ciertas familias de bolas abiertas centradas en un punto son base local de este punto.
\item[(v)] Hemos respondido a dos cuestiones abiertas relacionadas con la convergencia standard, un concepto más fuerte que el de convergencia de sucesiones en espacios métricos fuzzy, introducido de forma natural a partir del concepto de sucesión de Cauchy standard (introducido en \cite{adomain}). Estas respuestas nos han llevado a establecer unas condiciones bajo las cuales un concepto relacionado con el concepto de sucesión de Cauchy y un concepto relacionado con el de convergencia deberían satisfacer para ser consideradas \textsl{compatibles}.
\item[(vi)] Como aplicación práctica, hemos mostrado que una cierta métrica fuzzy es útil para medir diferencia perceptual de color entre muestras de color.
\end{enumerate} / [CA] La matemàtica fuzzy ha constituït un ampli camp en la investigació, des que el 1965 L. A. Zadeh va introduir el concepte de conjunt fuzzy. En particular, la construcció d'una teoria satisfactòria d'espais mètrics fuzzy ha estat un problema investigat per molts autors. El 1994, George i Veeramani introduiren i estudiaren una noció d'espai mètric fuzzy que constituïa una modificació de la donada per Kramosil i Michalek anteriorment. Molts autors han contribuït a l'estudi d'aquest tipus de mètriques fuzzy, des del punt de vista matemàtic i de les seves aplicacions. En aquesta tesi hem contribuït al desenvolupament de l'estudi d'aquestes mètriques fuzzy, des del punt de vista matemàtic, i hem abordat el problema de la mesura de la diferència perceptiva de color utilitzant aquestes mètriques.
Les contribucions que aportem en aquesta tesi a tal estudi es resumeixen a continuació:
\begin{enumerate}
\item[(i)] Hem fet un estudi detallat de l'espai mètric fuzzy $(X,M,\cdot)$ on $M$ està donada sobre $[0,\infty[$ per l'expressió $M(x,y,t)=\frac{\min\{x,y\}+t}{\max\{x,y\}+t}$ i d'altres espais mètrics fuzzy relacionats amb ell. Com a conseqüència d'aquest estudi hem introduït cinc qüestions en la teoria de les mètriques fuzzy relacionades amb continuïtat, extensió, contractividad i completació.
\item[(ii)] Hem respost a una qüestió oberta construint un espai mètric fuzzy $ (X, M, \ast) $ en el qual l'assignació $ f (t) = \lim_n M (a_n, b_n, t) $, on $ \{a_n\} $ i $ \{b_n \} $ són successions $ M $-Cauchy, no és una funció contínua sobre $ t $. La resposta a aquesta qüestió ens ha permès caracteritzar la classe dels espais mètrics fuzzy strong completables.
\item[(iii)] Hem introduït i estudiat un concepte més fort que el de convergència de successions en espais mètrics fuzzy, al qual hem anomenat $ s $-Convergència. En el nostre estudi hem aconseguit una caracterització d'aquells espais mètrics fuzzy en els quals tota successió convergent és $ s $-convergente i hem donat una classificació dels espais mètrics fuzzy atenent al seu comportament respecte als diferents tipus de convergència que es dóna en ell.
\item[(iv)] Hem estudiat, en el context dels espais mètrics fuzzy, quan certes famílies de boles obertes centrades en un punt són base local d'aquest punt.
\item[(v)] Hem respost a dues qüestions obertes relacionades amb la convergència estàndard, un concepte més fort que el de convergència de successions en espais mètrics fuzzy, introduït de forma natural a partir del concepte de successió de Cauchy estàndard (introduït en \cite{adomain}). Aquestes respostes ens han portat a establir unes condicions sota les quals un concepte relacionat amb el concepte de successió de Cauchy i un concepte relacionat amb el de convergència haurien de satisfer per a ser considerats \textsl{compatibles}.
\item[(vi)] Com a aplicació pràctica, hem mostrat que una certa mètrica fuzzy és útil per mesurar la diferència perceptiva de color entre mostres de color.
\end{enumerate} / Miñana Prats, JJ. (2015). Fuzzy metric spaces and applications to perceptual colour-differences [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/50612 / Compendio
|
2 |
Topological and Computational Models for Fuzzy Metric Spaces via Domain TheoryRICARTE MORENO, LUIS-ALBERTO 23 December 2013 (has links)
This doctoral thesis is devoted to investigate the problem of establishing
connections between Domain Theory and the theory of fuzzy metric spaces, in
the sense of Kramosil and Michalek, by means of the notion of a formal ball,
and then constructing topological and computational models for (complete)
fuzzy metric spaces.
The antecedents of this research are mainly the well-known articles of A.
Edalat and R. Heckmann [A computational model for metric spaces, Theoret-
ical Computer Science 193 (1998), 53-73], and R. Heckmann [Approximation
of metric spaces by partial metric spaces, Applied Categorical Structures 7
(1999), 71-83], where the authors obtained nice and direct links between Do-
main Theory and the theory of metric spaces - two crucial tools in the study
of denotational semantics - by using formal balls.
Since every metric induces a fuzzy metric (the so-called standard fuzzy
metric), the problem of extending Edalat and Heckmann's works to the fuzzy
framework arises in a natural way.
In our study we essentially propose two di erent approaches. For the
rst one, valid for those fuzzy metric spaces whose continuous t-norm is
the minimum, we introduce a new notion of fuzzy metric completeness (the
so-called standard completeness) that allows us to construct a (topological)
model that includes the classical theory as a special case. The second one,
valid for those fuzzy metric spaces whose continuous t-norm is greater or
equal than the Lukasiewicz t-norm, allows us to construct, among other
satisfactory results, a fuzzy quasi-metric on the continuous domain of formal
balls whose restriction to the set of maximal elements is isometric to the
given fuzzy metric. Thus we obtain a computational model for complete
fuzzy metric spaces.
We also prove some new xed point theorems in complete fuzzy metric
spaces with versions to the intuitionistic case and the ordered case, respec-
tively.
Finally, we discuss the problem of extending the obtained results to the
asymmetric framework. / Ricarte Moreno, L. (2013). Topological and Computational Models for Fuzzy Metric Spaces via Domain Theory [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/34670
|
3 |
Soft Set Theory: Generalizations, Fixed Point Theorems, and ApplicationsAbbas, Mujahid 30 March 2015 (has links)
Tesis por compendio / Mathematical models have extensively been used in problems related to
engineering, computer sciences, economics, social, natural and medical sciences
etc. It has become very common to use mathematical tools to solve,
study the behavior and different aspects of a system and its different subsystems.
Because of various uncertainties arising in real world situations,
methods of classical mathematics may not be successfully applied to solve
them. Thus, new mathematical theories such as probability theory and fuzzy
set theory have been introduced by mathematicians and computer scientists
to handle the problems associated with the uncertainties of a model. But
there are certain deficiencies pertaining to the parametrization in fuzzy set
theory. Soft set theory aims to provide enough tools in the form of parameters
to deal with the uncertainty in a data and to represent it in a useful
way. The distinguishing attribute of soft set theory is that unlike probability
theory and fuzzy set theory, it does not uphold a precise quantity. This
attribute has facilitated applications in decision making, demand analysis,
forecasting, information sciences, mathematics and other disciplines.
In this thesis we will discuss several algebraic and topological properties
of soft sets and fuzzy soft sets. Since soft sets can be considered as setvalued
maps, the study of fixed point theory for multivalued maps on soft
topological spaces and on other related structures will be also explored.
The contributions of the study carried out in this thesis can be summarized
as follows:
i) Revisit of basic operations in soft set theory and proving some new
results based on these modifications which would certainly set a new
dimension to explore this theory further and would help to extend its
limits further in different directions. Our findings can be applied to
develop and modify the existing literature on soft topological spaces
ii) Defining some new classes of mappings and then proving the existence
and uniqueness of such mappings which can be viewed as a positive
contribution towards an advancement of metric fixed point theory
iii) Initiative of soft fixed point theory in framework of soft metric spaces
and proving the results lying at the intersection of soft set theory and
fixed point theory which would help in establishing a bridge between
these two flourishing areas of research.
iv) This study is also a starting point for the future research in the area of
fuzzy soft fixed point theory. / Abbas, M. (2014). Soft Set Theory: Generalizations, Fixed Point Theorems, and Applications [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/48470 / Compendio
|
4 |
On some results of analysis in metric spaces and fuzzy metric spacesAphane, Maggie 12 1900 (has links)
The notion of a fuzzy metric space due to George and Veeramani has many
advantages in analysis since many notions and results from classical metric space
theory can be extended and generalized to the setting of fuzzy metric spaces, for
instance: the notion of completeness, completion of spaces as well as extension of
maps. The layout of the dissertation is as follows:
Chapter 1 provide the necessary background in the context of metric spaces, while
chapter 2 presents some concepts and results from classical metric spaces in the
setting of fuzzy metric spaces. In chapter 3 we continue with the study of fuzzy
metric spaces, among others we show that: the product of two complete fuzzy metric
spaces is also a complete fuzzy metric space.
Our main contribution is in chapter 4. We introduce the concept of a standard
fuzzy pseudo metric space and present some results on fuzzy metric identification.
Furthermore, we discuss some properties of t-nonexpansive maps. / Mathematical Sciences / M. Sc. (Mathematics)
|
5 |
On some results of analysis in metric spaces and fuzzy metric spacesAphane, Maggie 12 1900 (has links)
The notion of a fuzzy metric space due to George and Veeramani has many
advantages in analysis since many notions and results from classical metric space
theory can be extended and generalized to the setting of fuzzy metric spaces, for
instance: the notion of completeness, completion of spaces as well as extension of
maps. The layout of the dissertation is as follows:
Chapter 1 provide the necessary background in the context of metric spaces, while
chapter 2 presents some concepts and results from classical metric spaces in the
setting of fuzzy metric spaces. In chapter 3 we continue with the study of fuzzy
metric spaces, among others we show that: the product of two complete fuzzy metric
spaces is also a complete fuzzy metric space.
Our main contribution is in chapter 4. We introduce the concept of a standard
fuzzy pseudo metric space and present some results on fuzzy metric identification.
Furthermore, we discuss some properties of t-nonexpansive maps. / Mathematical Sciences / M. Sc. (Mathematics)
|
Page generated in 0.0588 seconds