• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 5
  • 3
  • Tagged with
  • 18
  • 18
  • 11
  • 10
  • 9
  • 9
  • 9
  • 9
  • 8
  • 7
  • 7
  • 6
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Domaines nodaux et points critiques de fonctions propres d’opérateurs de Schrödinger

Charron, Philippe 06 1900 (has links)
La présente thèse porte sur les fonctions propres du laplacien et d’opérateurs de Schrödinger en dimension quelconque. Plus précisément, pour une variété (M,g) de dimension d et une fonction V : M → R, on considère les solutions de l’équation suivante: (∆_g + V ) f_λ = λ f_λ . On appelle l’opérateur ∆_g + V un opérateur de Schrödinger et V le potentiel. Le cas le plus simple et le plus étudié est le laplacien (on pose V ≡ 0 sur M ). Si M est compacte et sans bord, alors il existe une suite 0 = λ_0 < λ_1 ≤ λ_2 -> +∞ qui forme le spectre de ∆_g et une suite de fonctions propres f_n qui satisfont à ∆_g f_n = λ_n f_n . Cette propriété est aussi respectée pour beaucoup de potentiels et de variétés. Premièrement, nous avons étudié le nombre de domaines nodaux des fonctions propres quand la valeur propre tend vers l’infini. Les domaines nodaux d’une fonction f sur M sont les composantes connexes de l’ensemble M \f^{−1} (0). Ils nous permettent de mesurer le caractère oscillatoire de f en comptant le nombre de fois où f change de signe. L’objectif principal de la thèse était de généraliser le théorème de Pleijel [52] sur le nombre de domaines nodaux des fonctions propres du laplacien à d’autre opérateurs de Schrödinger. Dans l’article [2], nous avons montré que la borne du théorème de Pleijel s’applique aussi à l’oscillateur harmonique quantique dans R^d . De plus, nous avons remarqué que cette borne pouvait être améliorée en fonction de la forme quadratique qui définit le potentiel. Ensuite, dans l’article [3], nous avons généralisé le résultat obtenu dans [2] à une large classe de potentiels radiaux, incluant des potentiels qui tendent vers zéro à l’infini ou ayant une singularité à l’origine. Cela inclut le potentiel de Coulomb, qui modélise un atome d’hydrogène isolé dans l’espace. Pour ces potentiels, nous considérons les valeurs propres strictement inférieures au spectre essentiel. Nous avons aussi étudié les points critiques des fonctions propres du laplacien. Jusqu’à tout récemment, il y avait seulement une borne inférieure sur le nombre de points critiques pour certaines variétés [36], mais il n’y avait pas de borne supérieure connue. En 2019, Buhovsky, Logunov et Sodin ont construit une métrique sur T^2 et une suite de fonctions propres du laplacien qui ont toutes une infinité de points critiques. Dans l’article [4], nous utilisons une nouvelle méthode pour construire des métriques sur T^2 et S^2 et des fonctions propres pour ces métriques qui ont une infinité de points critiques. De plus, nous montrons que ces métriques peuvent être arbitrairement proches de la métrique plate sur T^2 et de la métrique standard sur S^2 . Ces métriques donnent aussi des contre-exemples à la conjecture de Courant-Hermann sur le nombre de domaines nodaux des combinaisons linéaires de fonctions propres du laplacien. / The theme of this thesis is the study of the eigenfunctions of the Laplacian and Schrödinger operators. Let (M,g) be a manifold and V : M → R. We are looking at solutions of the following equation: (∆_g + V ) f_λ = λ f_λ . The operator ∆_g + V is called a Schrödinger operator and V is called the potential. The simplest and most studied example is the Laplacian (we put V ≡ 0 on M ). If M is compact and without boundary, then there exists a sequence 0 = λ_0 < λ_1 ≤ λ_2 -> +∞ that makes the spectrum of ∆_g and a sequence of eigenfunctions f_n such that ∆_g f_n = λ_n f_n . This decomposition also holds for various potentials and manifolds. Firstly, we studied the nodal domains of the eigenfunctions as the eigenvalues tend to infinity. The nodal domains of a function f on M are the connected components of M \f^{−1} (0). They can be used to understand the oscillatory character of eigenfunctions by counting the number of times that f changes sign. The principal goal of this thesis was to generalize Pleijel’s nodal domain theorem [52] to other Schrödinger operators. In the article [2], we showed that the upper bound in Pleijel’s theorem also holds for the quantum harmonic oscillator. Furthermore, this bound can be improved depending on the quadratic form that defines the potential. Afterwards, in the article [3], we generalized the result from [2] to a large class of radial potentials, including ones that tend to zero at infinity. These include the Coulomb potential, which modelizes the hydrogen atom in free space. We also studied the number of critical points of Laplace eigenfunctions. Until recently, there were only known lower bounds for certain manifolds [36], but no upper bound was known. In 2019, Buhovsky, Logunov and Sodin [18] constructed a metric on T^2 and a sequence of Laplace eigenfunctions which all have infinitely many critical points. In our article [4], we used a different method to create metrics on T^2 and S^2 and Laplace eigenfunctions for these metrics that have infinitely many critical points. Furthermore, these metrics can be taken arbitrarily close to the flat metric on T^2 and the round metric on S^2. These constructions also provide strong counterexamples to the Courant-Hermann conjecture on the number of nodal domains of linear combinations of Laplace eigenfunctions.
12

Analyse spectrale de différents types de tambours : le tambour circulaire, le tabla et la timbale

Bentz-Moffet, Rosalie 08 1900 (has links)
Ce mémoire traite de l’harmonicitié d’instruments de musique à travers la géométrie spectrale. Nous y présentons, en premier lieu, les résultats connus concernant la corde de guitare, le tambour circulaire et puis le tabla ; le premier est harmonique, le deuxième ne l’est pas et puis le dernier s’en approche. Le cas de la timbale est ce qui constitue la majeure partie de notre travail. L’ingénieur-physicien Robert E. Davis en avait déjà étudié la quasi-harmonicité et nous faisons ici une relecture mathématique de sa démarche. En alliant les méthodes analytiques et numériques, nous montrons que la caisse de résonance de la timbale permet à la fois d’ajuster les fréquences de vibration de la forme ω_(i1) , avec 1 ≤ i ≤ 5, afin qu’elles s’approchent du rapport idéal 2 : 3 : 4 : 5 : 6, et elle permet aussi d’étouffer certains autres modes dissonants. Pour ce faire, nous élaborons un modèle simplifié de timbale cylindrique basé sur la physique et sur ce que propose Davis dans sa thèse. Ce modèle nous fournit un système d’équations divisé en trois parties : la vibration de la peau et la pression à l’intérieur et à l’extérieur de la timbale. Nous utilisons la méthode des fonctions de Green pour trouver les expressions des deux pressions. Nous nous servons de celles-ci ainsi que d’un développement en série de Fourier-Bessel modifiée pour résoudre les équations de la vibration de la peau. La résolution de ces équations se ramène finalement à celle d’un système matriciel infini dont nous faisons l’analyse numériquement. À l’aide de Mathématica et de ce système matriciel, nous trouvons les fréquences de vibration de la timbale, ce qui nous permet d’analyser l’harmonicité de l’instrument. Grâce à une mesure de dissonance, nous optimisons l’harmonicité de la timbale en fonction du rayon du cylindre, de sa hauteur et de la tension. / This thesis deals with the harmonicity of musical instruments through spectral geometry. First, we present the known results concerning the guitar string, the circular drum and the tabla ; the first is harmonic, the second is not, and the last is somewhere in between. The case of the timpani constitutes the major part of our work. The physicist-engineer Robert E. Davis had already studied its quasi-harmonicity and here we undergo a mathematical proofreading of his approach. By combining analytical and numerical methods, we show that the sound box of the timpani allows an adjustement of the vibration frequencies of the form ω_(i1) , with 1 ≤ i ≤ 5, so that they get close to the ideal 2 : 3 : 4 : 5 : 6 ratio, while it also stifles some other dissonant modes. To do so, we develop a simplified model of a cylindrical timpani based on physics and on what Davis suggests in his thesis. This model provides a system of equations divided into three parts : the vibration of the skin and the pressure inside and outside the timpani. We use the method of Green’s functions to find the expressions of the pressures. We use these together with a modified Fourier-Bessel series development to solve the equations of the vibration of the skin. In the end, the solving of these equations is reduced to an infinite matrix system that we analyze numerically. Using Mathematica and this matrix system, we find the vibrational frequencies of the timpani, which allows us to analyze the harmonicity of the instrument. Thanks to a measure of dissonance, we optimize the harmonicity of different timpani models with different cylinder radii, heights and tensions.
13

Partitions spectrales optimales pour les problèmes aux valeurs propres de Dirichlet et de Neumann

Péloquin-Tessier, Hélène 10 1900 (has links)
Les façons d'aborder l'étude du spectre du laplacien sont multiples. Ce mémoire se concentre sur les partitions spectrales optimales de domaines planaires. Plus précisément, lorsque nous imposons des conditions aux limites de Dirichlet, nous cherchons à trouver la ou les partitions qui réalisent l'infimum (sur l'ensemble des partitions à un certain nombre de composantes) du maximum de la première valeur propre du laplacien sur tous ses sous-domaines. Dans les dernières années, cette question a été activement étudiée par B. Helffer, T. Hoffmann-Ostenhof, S. Terracini et leurs collaborateurs, qui ont obtenu plusieurs résultats analytiques et numériques importants. Dans ce mémoire, nous proposons un problème analogue, mais pour des conditions aux limites de Neumann cette fois. Dans ce contexte, nous nous intéressons aux partitions spectrales maximales plutôt que minimales. Nous cherchons alors à vérifier le maximum sur toutes les $k$-partitions possibles du minimum de la première valeur propre non nulle de chacune des composantes. Cette question s'avère plus difficile que sa semblable dans la mesure où plusieurs propriétés des valeurs propres de Dirichlet, telles que la monotonicité par rapport au domaine, ne tiennent plus. Néanmoins, quelques résultats sont obtenus pour des 2-partitions de domaines symétriques et des partitions spécifiques sont trouvées analytiquement pour des domaines rectangulaires. En outre, des propriétés générales des partitions spectrales optimales et des problèmes ouverts sont abordés. / There exist many ways to study the spectrum of the Laplace operator. This master thesis focuses on optimal spectral partitions of planar domains. More specifically, when imposing Dirichlet boundary conditions, we try to find partitions that achieve the infimum (over all the partitions of a given number of components) of the maximum of the first eigenvalue of the Laplacian in all the subdomains. This question has been actively studied in recent years by B. Helffer, T. Hoffmann-Ostenhof, S. Terracini and their collaborators, who obtained a number of important analytic and numerical results. In the present thesis we propose a similar problem, but for the Neumann boundary conditions. In this case, we are looking for spectral maximal, rather than minimal, partitions. More precisely, we attempt to find the maximum over all possible $k$-partitions of the minimum of the first non-zero Neumann eigenvalue of each component. This question appears to be more difficult than the one for the Dirichlet conditions, since many properties of Dirichlet eigenvalues, such as domain monotonicity, no longer hold in the Neumann case. Nevertheless, some results are obtained for 2-partitions of symmetric domains, and specific partitions are found analytically for rectangular domains. In addition, some general properties of optimal spectral partitions and open problems are also discussed.
14

Croissance et ensemble nodal de fonctions propres du laplacien sur des surfaces

Roy-Fortin, Guillaume 07 1900 (has links)
Dans cette thèse, nous étudions les fonctions propres de l'opérateur de Laplace-Beltrami - ou simplement laplacien - sur une surface fermée, c'est-à-dire une variété riemannienne lisse, compacte et sans bord de dimension 2. Ces fonctions propres satisfont l'équation $\Delta_g \phi_\lambda + \lambda \phi_\lambda = 0$ et les valeurs propres forment une suite infinie. L'ensemble nodal d'une fonction propre du laplacien est celui de ses zéros et est d'intérêt depuis les expériences de plaques vibrantes de Chladni qui remontent au début du 19ème siècle et, plus récemment, dans le contexte de la mécanique quantique. La taille de cet ensemble nodal a été largement étudiée ces dernières années, notamment par Donnelly et Fefferman, Colding et Minicozzi, Hezari et Sogge, Mangoubi ainsi que Sogge et Zelditch. L'étude de la croissance de fonctions propres n'est pas en reste, avec entre autres les récents travaux de Donnelly et Fefferman, Sogge, Toth et Zelditch, pour ne nommer que ceux-là. Notre thèse s'inscrit dans la foulée du travail de Nazarov, Polterovich et Sodin et relie les propriétés de croissance des fonctions propres avec la taille de leur ensemble nodal dans l'asymptotique $\lambda \nearrow \infty$. Pour ce faire, nous considérons d'abord les exposants de croissance, qui mesurent la croissance locale de fonctions propres et qui sont obtenus à partir de la norme uniforme de celles-ci. Nous construisons ensuite la croissance locale moyenne d'une fonction propre en calculant la moyenne sur toute la surface de ces exposants de croissance, définis sur de petits disques de rayon comparable à la longueur d'onde. Nous montrons alors que la taille de l'ensemble nodal est contrôlée par le produit de cette croissance locale moyenne et de la fréquence $\sqrt{\lambda}$. Ce résultat permet une reformulation centrée sur les fonctions propres de la célèbre conjecture de Yau, qui prévoit que la mesure de l'ensemble nodal croît au rythme de la fréquence. Notre travail renforce également l'intuition répandue selon laquelle une fonction propre se comporte comme un polynôme de degré $\sqrt{\lambda}$. Nous généralisons ensuite nos résultats pour des exposants de croissance construits à partir de normes $L^q$. Nous sommes également amenés à étudier les fonctions appartenant au noyau d'opérateurs de Schrödinger avec petit potentiel dans le plan. Pour de telles fonctions, nous obtenons deux résultats qui relient croissance et taille de l'ensemble nodal. / In this thesis, we study eigenfunctions of the Laplace-Beltrami operator - or simply the Laplacian - on a closed surface, i.e. a two dimensional smooth, compact Riemannian manifold without boundary. These functions satisfy $\Delta_g \phi_\lambda + \lambda \phi_\lambda = 0$ and the eigenvalues form an infinite sequence. The nodal set of a Laplace eigenfunction is its zero set and is of interest since the vibrating plates experiments of Chladni at the beginning of the 19th century as well as, more recently, in the context of quantum mechanics. The size of the nodal sets has been largely studied recently, notably by Donnelly and Fefferman, Colding and Minicozzi, Hezari and Sogge, Mangoubi as well as Sogge and Zelditch.The study of eigenfunction growth is also an active topic, with the recent works of Donnelly and Fefferman, Sogge, Toth and Zelditch to name only a few. Our thesis follows the work of Nazarov, Polterovich and Sodin and links growth and nodal sets of eigenfunctions in the asymptotic $\lambda \nearrow \infty$. To do so, we first consider growth exponents, which measure the local growth of eigenfunctions via their uniform norm. The average local growth of an eigenfunction is built by averaging growth exponents defined on small disks of wavelength like radius over the whole surface. We show that the size of the nodal set is controlled by the product of this average local growth with the frequency $\sqrt{\lambda}$. This result allows a function theoretical reformulation of the famous conjecture of Yau, which predicts that the size of the nodal set grows like the frequency. Our work also strengthens the common intuition that an eigenfunction behaves in many ways like a polynomial of degree $\sqrt{\lambda}$. We then generalize our results to growth exponents built upon $L^q$ norms. We are also led to study functions belonging to the kernel of Schrödinger operators with small potential in the plane. For such functions, we obtain two results linking growth and size of nodal sets.
15

Égalités et inégalités géométriques pour les valeurs propres du laplacien et de Steklov

Métras, Antoine 08 1900 (has links)
No description available.
16

Asymptotiques spectrales et géométrie des nombres

Lagacé, Jean 06 1900 (has links)
No description available.
17

Le problème de Steklov paramétrique et ses applications

St-Amant, Simon 04 1900 (has links)
Ce mémoire contient deux articles que j’ai rédigés au cours de ma maîtrise. Le premier chapitre sert d’introduction à ces articles. Plusieurs concepts de géométrie spectrale y sont présentés dans le contexte du problème de Steklov, en plus des résultats principaux des chapitres subséquents. Le second chapitre porte sur le problème de Steklov paramétrique sur des surfaces lisses. Un développement asymptotique complet des valeurs propres du problème est obtenu à l’aide de méthodes pseudodifférentielles. Celui-ci généralise l’asymptotique spectrale déjà connue du problème de Steklov classique. Nous en déduisons de nouveaux invariants géométriques déterminés par le spectre. Le troisième chapitre porte sur le problème de ballottement sur des prismes à base triangulaire. Le but est de comprendre comment les angles du prisme affectent le deuxième terme du développement asymptotique de la fonction de compte des valeurs propres. En construisant des quasimodes, nous obtenons une expression de ce terme que nous conjecturons comme étant la bonne pour les vraies valeurs propres. Cette conjecture est alors supportée par des expériences numériques. / This thesis contains two articles that I wrote during my M.Sc. studies. The first chapter serves as an introduction to both articles. Some concepts of spectral geometry in the context of the Steklov problem are presented, as well as the main results of the subsequent chapters. The second chapter concerns the parametric Steklov problem on smooth surfaces. We obtain a complete asymptotic expansion of the eigenvalues of the problem by using pseudodifferential techniques. This generalizes the already known spectral asymptotics of the classical Steklov problem. We deduce new geometric invariants determined by the spectrum. The third chapter concerns the sloshing problem on triangular prisms. The goal is to understand how the angles in the prism affect the second term in the asymptotic expansion of the eigenvalue counting function. By constructing quasimodes, we obtain an expression for this term that we conjecture as being correct for the true eigenvalues. This conjecture is then supported by numerical experiments.
18

Conformal spectra, moduli spaces and the Friedlander-Nadirahvili invariants

Medvedev, Vladimir 08 1900 (has links)
Dans cette thèse, nous étudions le spectre conforme d'une surface fermée et le spectre de Steklov conforme d'une surface compacte à bord et leur application à la géométrie conforme et à la topologie. Soit (Σ, c) une surface fermée munie d'une classe conforme c. Alors la k-ième valeur propre conforme est définie comme Λ_k(Σ,c)=sup{λ_k(g) Aire(Σ,g)| g ∈ c), où λ_k(g) est la k-ième valeur propre de l'operateur de Laplace-Beltrami de la métrique g sur Σ. Notons que nous commeçons par λ_0(g) = 0. En prennant le supremum sur toutes les classes conformes C sur Σ on obtient l'invariant topologique suivant de Σ: Λ_k(Σ)=sup{Λ_k(Σ,c)| c ∈ C}. D'après l'article [65], les quantités Λ_k(Σ, c) et Λ_k(Σ) sont bien définies. Si une métrique g sur Σ satisfait λ_k(g) Aire(Σ, g) = Λ_k(Σ), alors on dit que g est maximale pour la fonctionnelle λ_k(g) Aire(Σ, g). Dans l'article [73], il a été montré que les métriques maximales pour λ_1(g) Aire(Σ, g) peuvent au pire avoir des singularités coniques. Dans cette thèse nous montrons que les métriques maximales pour les fonctionnelles λ_1(g) Aire(T^2, g) et λ_1(g) Aire(KL, g), où T^2 et KL dénotent le 2-tore et la bouteille de Klein, ne peuvent pas avoir de singularités coniques. Ce résultat découle d'un théorème de classification de classes conformes par des métriques induites d'une immersion minimale ramifiée dans une sphère ronde aussi montré dans cette thèse. Un autre invariant que nous étudions dans cette thèse est le k-ième invariant de Friedlander-Nadirashvili défini comme: I_k(Σ) = inf{Λ_k(Σ, c)| c ∈ C}. L'invariant I_1(Σ) a été introduit dans l'article [34]. Dans cette thèse nous montrons que pour toute surface orientable et pour toute surface non-orientable de genre impaire I_k(Σ)=I_k(S^2) et pour toute surface non-orientable de genre paire I_k(RP^2) ≥ I_k(Σ)>I_k(S^2). Ici S^2 et RP^2 dénotent la 2-sphère et le plan projectif. Nous conjecturons que I_k(Σ) sont des invariants des cobordismes des surfaces fermées. Le spectre de Steklov conforme est défini de manière similaire. Soit (Σ, c) une surface compacte à bord non vide ∂Σ, alors les k-ièmes valeurs propres de Steklov conformes sont définies comme: σ*_k(Σ, c)=sup{σ_k(g) Longueur(∂Σ, g)| g ∈ c}, où σ_k(g) est la k-ième valeur propre de Steklov de la métrique g sur Σ. Ici nous supposons que σ_0(g) = 0. De façon similaire au problème fermé, on peut définir les quantités suivantes: σ*_k(Σ)=sup{σ*_k(Σ, c)| c ∈ C} et I^σ_k(Σ)=inf{σ*_k(Σ, c)| c ∈ C}. Les résultats de l'article [16] impliquent que toutes ces quantités sont bien définies. Dans cette thèse on obtient une formule pour la limite de σ*_k(Σ, c_n) lorsque la suite des classes conformes c_n dégénère. Cette formule implique que pour toute surface à bord I^σ_k(Σ)= I^σ_k(D^2), où D^2 dénote le 2-disque. On remarque aussi que les quantités I^σ_k(Σ) sont des invariants des cobordismes de surfaces à bord. De plus, on obtient une borne supérieure pour la fonctionnelle σ^k(g) Longueur(∂Σ, g), où Σ est non-orientable, en terme de son genre et le nombre de composants de bord. / In this thesis, we study the conformal spectrum of a closed surface and the conformal Steklov spectrum of a compact surface with boundary and their application to conformal geometry and topology. Let (Σ,c) be a closed surface endowed with a conformal class c then the k-th conformal eigenvalue is defined as Λ_k(Σ,c)=sup{λ_k(g) Aire(Σ,g)| g ∈ c), where λ_k(g) is the k-th Laplace-Beltrami eigenvalue of the metric g on Σ. Note that we start with λ_0(g) = 0 Taking the supremum over all conformal classes C on Σ one gets the following topological invariant of Σ: Λ_k(Σ)=sup{Λ_k(Σ,c)| c ∈ C}. It follows from the paper [65] that the quantities Λ_k(Σ, c) and Λ_k(Σ) are well-defined. Suppose that for a metric g on Σ the following identity holds λ_k(g) Aire(Σ, g) = Λ_k(Σ). Then one says that the metric g is maximal for the functional λ_k(g) Aire(Σ, g). In the paper [73] it was shown that the maximal metrics for the functional λ_1(g) Aire(Σ, g) at worst can have conical singularities. In this thesis we show that the maximal metrics for the functionals λ_1(g) Aire(T^2, g) and λ_1(g) Aire(KL, g), where T^2 and KL stand for the 2-torus and the Klein bottle respectively, cannot have conical singularities. This result is a corollary of a conformal class classification theorem by metrics induced from a branched minimal immersion into a round sphere that we also prove in the thesis. Another invariant that we study in this thesis is the k-th Friedlander-Nadirashvili invariant defined as: I_k(Σ) = inf{Λ_k(Σ, c)| c ∈ C}. The invariant I_1(Σ) was introduced in the paper [34]. In this thesis we prove that for any orientable surface and any non-orientable surface of odd genus I_k(Σ)=I_k(S^2) and for any non-orientable surface of even genus I_k(RP^2) ≥ I_k(Σ)>I_k(S^2). Here S^2 and RP^2 denote the 2-sphere and the projective plane respectively. We also conjecture that I_k(Σ) are invariants of cobordisms of closed manifolds. The conformal Steklov spectrum is defined in a similar way. Let (Σ, c) be a compact surface with non-empty boundary ∂Σ then the k-th conformal Steklov eigenvalues is defined by the formula: σ*_k(Σ, c)=sup{σ_k(g) Longueur(∂Σ, g)| g ∈ c}, where σ_k(g) is the k-th Steklov eigenvalue of the metric g on Σ. Here we suppose that σ_0(g) = 0. Similarly to the closed problem one can define the following quantities: σ*_k(Σ)=sup{σ*_k(Σ, c)| c ∈ C} and I^σ_k(Σ)=inf{σ*_k(Σ, c)| c ∈ C}. The results of the paper [16] imply that all these quantities are well-defined. In this thesis we obtain a formula for the limit of the k-th conformal Steklov eigenvalue when the sequence of conformal classes degenerates. Using this formula we show that for any surface with boundary I^σ_k(Σ)= I^σ_k(D^2), where D^2 stands for the 2-disc. We also notice that I^σ_k(Σ) are invariants of cobordisms of surfaces with boundary. Moreover, we obtain an upper bound for the functional σ^k(g) Longueur(∂Σ, g), where Σ is non-orientable, in terms of its genus and the number of boundary components.

Page generated in 0.4653 seconds