• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 263
  • 150
  • 61
  • 58
  • 26
  • 23
  • 20
  • 15
  • 10
  • 6
  • 5
  • 5
  • 3
  • 3
  • 3
  • Tagged with
  • 659
  • 226
  • 127
  • 124
  • 112
  • 79
  • 78
  • 78
  • 68
  • 63
  • 60
  • 57
  • 55
  • 55
  • 54
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

Vliv krátkodobé úrokové míry na ceny akcií v České republice / The Impact of Short-term Interest Rate on Stock Prices in the Czech Republic

Michlian, Štefan January 2014 (has links)
This thesis focuses on the relationship between short-term interest rate and stock prices. The main idea is that if interest-rate increases, it makes holding stocks less attractive relative to fixed income securities. Therefore, investors change the structure of their portfolios and switch capital from stocks to banks, which results in stock prices decrease. In our thesis, we apply GJR-GARCH-t-M model to study the impact of Czech interest rate (14-day PRIBOR) on the Prague Stock Exchange (the PX index). In contrast to the majority of research on this topic, we have found no impact of the PRIBOR rate on the PX index- neither on its mean nor on its volatility. We attribute the absence of a significant relationship to exceptional composition of the PX index. Furthermore, we have found that the recent crisis has significantly changed the behavior of the Czech stock market.
192

Realized Jump GARCH model: pomůže dekompozice volatility vylepšit predikční schopnosti modelu? / Realized Jump GARCH model: Can decomposition of volatility improve its forecasting?

Poláček, Jiří January 2014 (has links)
The present thesis focuses on exploration of the applicability of realized measures in volatility modeling and forecasting. We provide a first comprehensive study of jump variation impact on future volatility of Central and Eastern European stock markets. As a main workhorse, the recently proposed Realized Jump GARCH model, which enables a study of the impact of jump variation on future volatility forecasts, is used. In addition, we estimate Realized GARCH and heterogeneous autoregressive (HAR) models using one-minute and five-minute high frequency data. We find that jumps are important for future volatility, but only to a limited extent due to the high level of information aggregation within the stock market index. Moreover, Realized (Jump) GARCH models outperform the standard GARCH model in terms of data fit and forecasting performance. Comparison of forecasts with HAR models reveals that Realized (Jump) GARCH models capture higher portion of volatility variation. Eventually, Realized Jump GARCH compared to other Realized GARCH models provides comparable or even better forecasting performance.
193

Vícerozměrné finanční časové řady / Multivariate Financial Time Series

Veselý, Daniel January 2011 (has links)
In this work we will describe methods for modeling multivariate financial time series. We will concentrate on both modeling expected value by multi- variate Box-Jenkins processes and primarily on modeling conditional corre- lations and volatility. Our main object will be DCC (Dynamic Conditional Correlation) model, estimation of its parameters and some other general- izations. Then we will programme DCC model in statistical software R and apply on real data. In applications we will concentrate on problem of high dimension of financial time series and on modeling conditional correlations data with outliers.
194

Matematické metody konstrukce investičních portfolií / Mathematical methods of investment portfolios construction

Kůs, David January 2013 (has links)
This thesis describes statistical approaches of investment portfolio constructions. The theoretic part presents modern portfolio theory and specific statistical methods used to estimate expected revenue and risk of portfolio. These procedures are specifically selection method, modelling volatility using multivariate GARCH model, primarily DCC GARCH procedure and Bayes approach with Jeffrey's and conjugated density. The practical part of the thesis covers application of above mentioned statistical methods of investment portfolio constructions. The maximization of Sharp's ratio was chosen as optimization task. Researched portfolios are created from Austria Traded Index issues of shares where suitable time series of historical daily closed prices. Results attained within assembled portfolios in two year investment interval are later compared.
195

Estudo da volatilidade da série de preços da soja por meio de modelos GARCH e modelos ARFIMA / Volatility of soybean price range using GARCH models and ARFIMA models

Avancini, Gabriel Tambarussi 20 February 2015 (has links)
O objetivo deste trabalho foi estudar o comportamento da volatilidade do preço da soja negociada em contratos futuros na BM&FBOVESPA (série SFI). O estudo foi realizado por meio da comparação entre duas abordagens: na primeira, foi utilizada a série de retornos absolutos da série em questão para representar a volatilidade da mesma, que se mostrou persistente ao longo do tempo, comprovando o fato de que a série possui o comportamento de memória longa. Por ter apresentado tal comportamento, fez-se necessária a utilização de modelos ARFIMA (\"Autorregressivos Fracionários Integrados de Médias Móveis\") estes, que são capazes de capturar de maneira efetiva tal comportamento. Ainda dentro desta abordagem, os modelos foram estimados de duas maneiras distintas: a primeira, em que todos os parâmetros foram estimados simultaneamente e a segunda, em que primeiramente foi estimado o parâmetro de memória longa, diferenciada a série e, posteriormente, foram ajustados os modelos ARIMA nos dados diferenciados. Por fim, a segunda abordagem utilizada no trabalho é a mais comum em pesquisas acadêmicas: foi realizada a estimação dos modelos GARCH (\"Autorregressivos Generalizados de Heteroscedasticidade Condicional\") diretamente na série de retornos. Neste estudo, concluímos que a primeira abordagem se mostrou mais eficiente, dados os critérios de comparação utilizados. / The purpose of this article was to study the volatility of the soybean price traded in futures contracts on the BM&FBOVESPA (SFI series). The study was conduct by comparison between two approaches: first, was use the series of absolute returns of the respective series, to represent its volatility, which was persistent over time, proving the fact that the series has a long memory behavior. Because of such behavior, it was necessary to use ARFIMA models (\"Autoregressive Fractional Integrated Moving Average\"), which are able to capture effectively such behavior. Still using this approach, the models were estimate in two different ways: first, which all parameters were estimate simultaneously, and the second one, that was first estimated the long memory parameter, differentiated the series and, later, adjusted the ARIMA models in differentiated data. Finally, the second approach used in this work is the most common in academic research: the estimation of GARCH models (\"Generalized Autoregressive Conditional Heretoscskedasticity\") directly in the returns series of the studied series. In this study, we conclude that the first approach was more effective, given the comparison criteria used.
196

Modelagem da volatilidade em séries temporais financeiras via modelos GARCH com abordagem Bayesiana / Modeling of volatility in financial time series using GARCH models with Bayesian approach

Gutierrez, Karen Fiorella Aquino 18 July 2017 (has links)
Nas últimas décadas a volatilidade transformou-se num conceito muito importante na área financeira, sendo utilizada para mensurar o risco de instrumentos financeiros. Neste trabalho, o foco de estudo é a modelagem da volatilidade, que faz referência à variabilidade dos retornos, sendo esta uma característica presente nas séries temporais financeiras. Como ferramenta fundamental da modelação usaremos o modelo GARCH (Generalized Autoregressive Conditional Heteroskedasticity), que usa a heterocedasticidade condicional como uma medida da volatilidade. Considerar-se-ão duas características principais a ser modeladas com o propósito de obter um melhor ajuste e previsão da volatilidade, estas são: a assimetria e as caudas pesadas presentes na distribuição incondicional da série dos retornos. A estimação dos parâmetros dos modelos propostos será feita utilizando a abordagem Bayesiana com a metodologia MCMC (Markov Chain Monte Carlo) especificamente o algoritmo de Metropolis-Hastings. / In the last decades volatility has become a very important concept in the financial area, being used to measure the risk of financial instruments. In this work, the focus of study is the modeling of volatility, that refers to the variability of returns, which is a characteristic present in the financial time series. As a fundamental modeling tool, we used the GARCH (Generalized Autoregressive Conditional Heteroskedasticity) model, which uses conditional heteroscedasticity as a measure of volatility. Two main characteristics will be considered to be modeled with the purpose of a better adjustment and prediction of the volatility, these are: heavy tails and an asymmetry present in the unconditional distribution of the return series. The estimation of the parameters of the proposed models is done by means of the Bayesian approach with an MCMC (Markov Chain Monte Carlo) methodology , specifically the Metropolis-Hastings algorithm.
197

Análise da volatilidade dos mercados de renda fixa e renda variável de países emergentes e desenvolvidos no período de 2000 a 2011 / Analysis of volatility of fixed income market and stock market of emerging and developed countries in the period 2000-2011

Rossetti, Nara 15 August 2013 (has links)
O presente trabalho analisou as volatilidades dos mercados de renda fixa e variável de onze países, sendo eles: Brasil, Rússia, Índia, China, África do Sul (neste país apenas renda fixa), Argentina, Chile, México, Estados Unidos, Alemanha e Japão no período de janeiro de 2000 a dezembro de 2011. Os indicadores utilizados para representar cada mercado foram os índices dos mercados de ações e as taxas de juros interbancárias. Para tanto, o estudo se utilizou de modelos de heterocedasticidade condicional auto-regressiva: ARCH, GARCH, EGARCH, TGARCH e PGARCH, verificando quais destes processos eram mais eficientes para modelagem da volatilidade dos mercados dos países da amostra. Esta pesquisa também verificou qual dos modelos (ARIMA ou modelos GARCH e suas extensões) conseguiria prever melhor as séries de tempo analisadas. Além disso, por meio dos índices de correlação, covariância e causalidade Granger, foram comparados os retornos e a volatilidade do mercado de ações entre os países BRIC, entre os países latinos americanos e entre os países desenvolvidos e o Brasil. Os resultados sugerem que a volatilidade, tanto do mercado de renda fixa quanto do mercado de renda variável, é mais bem modelada por processos GARCH assimétricos (EGARCH e TGARCH), demonstrando efeitos de alavancagem nas séries estudadas. Quanto aos modelos de previsão, os modelos ARIMA, também para os dois mercados, mostrou-se mais eficiente que os modelos GARCH e suas extensões. Além disso, as volatilidades dos mercados de ações entre os países analisados parecem ser mais correlacionadas e possuir maior causalidade Granger do que os retornos destes países. Entre os dois mercados, renda fixa e variável dentro de cada país, as correlações dos retornos e da volatilidade são muito baixas, em algumas vezes negativa, e há pouca relação de causalidade Granger. / This study analyzed the volatility of fixed income and stocks markets for eleven countries, namely: Brazil, Russia, India, China, South Africa (just fixed income), Argentina, Chile, Mexico, United States, Germany and Japan from January 2000 to December 2011, using interbank interest rate as a fixed income market indicator and stock index to each country, as a stock market indicator. Therefore, the study used models of autoregressive conditional heteroscedasticity: ARCH, GARCH, EGARCH, TGARCH e PGARCH to verify which of these processes were more effective for in volatility modeling in each country. This research also found that the models (ARIMA or GARCH models and their extensions) could be used as the best forecast models. Moreover, by means of correlation coefficients, covariance and Granger causality, were used to compare the returns and volatility of the stock market among the BRIC countries, among the Latin American countries and between developed countries and Brazil. The results suggest that the volatility of both the fixed income market as the stock market is best modeled by processes asymmetric GARCH (EGARCH and TGARCH) demonstrating leverage effects in the time series. Regarding prediction ARIMA models was more efficient for both markets than GARCH models and extensions. In addition, the volatility of stock markets across countries analyzed seem to be more correlated and have higher Granger causality than returns these countries. Between the two markets, for each country, the correlations of returns and volatility are very low, if not positive, and there is low Granger causality.
198

Modelos de memória longa, GARCH e GARCH com memória longa para séries financeiras / Long memory, GARCH and long memory GARCH models for financial time series

Solda, Grazielle Yumi 10 April 2008 (has links)
O objetivo deste trabalho é apresentar e comparar diferentes métodos de modelagem da volatilidade (variância condicional) de séries temporais financeiras. O modelo ARFIMA é empregado para capturar o comportamento de memória longa observado na volatilidade de séries financeiras. Por sua vez, o modelo GARCH é utilizado para modelar a volatilidade variando no tempo destas séries. Finalmente, o modelo FIGARCH é utilizado para modelar a dinâmica dos retornos de séries temporais financeiras juntamente com sua volatilidade. Serão apresentados alguns estimadores para os parâmetros dos modelos estudados. Foram realizadas simulações dos três tipos de modelos com o objetivo de comparar o comportamento dos estimadores para diferentes valores dos parâmetros. Por fim, serão apresentadas aplicações em séries reais. / The goal of this project is to present and compare differents methods of modeling volatility (conditional variance) in financial time series. ARFIMA model is applied to capture long memory behavior of volatility in financial time series. GARCH model is used to model the temporal variation in financial volatility. Finally, FIGARCH model is used to model dynamic of financial time series returns as well as its volatility behavior. We present some estimators for the studied models. Estimators behavior of the three types of models for different parameters is assessed through a simulation study. At last, applications to real data are presented.
199

Modelagem de volatilidade via modelos GARCH com erros assimétricos: abordagem Bayesiana / Volatility modeling through GARCH models with asymetric errors: Bayesian approach

Fioruci, José Augusto 12 June 2012 (has links)
A modelagem da volatilidade desempenha um papel fundamental em Econometria. Nesta dissertação são estudados a generalização dos modelos autorregressivos condicionalmente heterocedásticos conhecidos como GARCH e sua principal generalização multivariada, os modelos DCC-GARCH (Dynamic Condicional Correlation GARCH). Para os erros desses modelos são consideradas distribuições de probabilidade possivelmente assimétricas e leptocúrticas, sendo essas parametrizadas em função da assimetria e do peso nas caudas, necessitando assim de estimar esses parâmetros adicionais aos modelos. A estimação dos parâmetros dos modelos é feita sob a abordagem Bayesiana e devido às complexidades destes modelos, métodos computacionais baseados em simulações de Monte Carlo via Cadeias de Markov (MCMC) são utilizados. Para obter maior eficiência computacional os algoritmos de simulação da distribuição a posteriori dos parâmetros são implementados em linguagem de baixo nível. Por fim, a proposta de modelagem e estimação é exemplificada com dois conjuntos de dados reais / The modeling of volatility plays a fundamental role in Econometrics. In this dissertation are studied the generalization of known autoregressive conditionally heteroscedastic (GARCH) models and its main principal multivariate generalization, the DCCGARCH (Dynamic Conditional Correlation GARCH) models. For the errors of these models are considered distribution of probability possibility asymmetric and leptokurtic, these being parameterized as a function of asymmetry and the weight on the tails, thus requiring estimate the models additional parameters. The estimation of parameters is made under the Bayesian approach and due to the complexities of these models, methods computer-based simulations Monte Carlo Markov Chain (MCMC) are used. For more computational efficiency of simulation algorithms of posterior distribution of the parameters are implemented in low-level language. Finally, the proposed modeling and estimation is illustrated with two real data sets
200

[en] GARCH OPTION PRICING MODEL VIA FILTERED HISTORICAL SIMULATION: AN APPLICATION ON THE BRAZILIAN MARKET / [pt] MODELO GARCH DE APREÇAMENTO DE OPÇÕES VIA SIMULAÇÃO HISTÓRICA FILTRADA: UMA APLICAÇÃO PARA O MERCADO BRASILEIRO

NAYARA LOPES GOMES 09 October 2012 (has links)
[pt] O modelo implementado neste trabalho, proposto em Barone-Adesi, Engle e Mancini (2008), utiliza o método da Simulação Histórica Filtrada em conjunto com a simulação de Monte Carlo para calibração de parâmetros de um modelo GARCH a partir do qual opções do mercado brasileiro são apreçadas. Os retornos da simulação são gerados a partir das inovações empíricas obtidas no modelo GARCH assimétrico ajustado aos retornos diários das ações. Os resultados obtidos apontam para ajustes satisfatórios dentro da amostra, quando comparado ao modelo de Black E Scholes. No entanto, fora da amostra, resultados similares foram verificados para ambos os modelos de apreçamento. / [en] The model implemented in this work, proposed by Barone-Adesi, Engle, and Mancini (2008), applies the Filtered Historical Simulation method based on Monte Carlo simulation to calibrate the parameters of a GARCH model in which options from Brazilian market are priced. The simulated returns are generated from empirical innovations obtained by an asymmetric GARCH model adjusted for daily stock returns. The results suggest a satisfactory in-sample fit when compared to the Black E Scholes model. However, similar results were observed out-of-sample for both pricing models.

Page generated in 0.0318 seconds