81 |
The alteration history of a series of shear zones, Mirage Islands, Yellowknife Bay, N.W.T. /Relf, Carolyn Diane. January 1988 (has links)
Thesis (M.Sc.)--Memorial University of Newfoundland. / Typescript. Bibliography: leaves 263-277. Also available online.
|
82 |
The cyanidation of high grade gold and silver concentrateButler, Reginald Henry Brinton. Beard, John Warren. January 1900 (has links) (PDF)
Thesis (B.S.)--University of Missouri, School of Mines and Metallurgy, 1909. / Year degrees were granted determined from "Forty-First Annual Catalogue. School of Mines and Metallurgy, University of Missouri". The entire thesis text is included in file. Typescript. Illustrated by authors. Title from title screen of thesis/dissertation PDF file (viewed )
|
83 |
Drilling for placer deposits of gold and platinum in the jungles of ColombiaSeiberling, Theodore Owen. January 1936 (has links) (PDF)
Thesis (Professional Degree)--University of Missouri, School of Mines and Metallurgy, 1936. / The entire thesis text is included in file. Typescript. Title from title screen of thesis/dissertation PDF file (viewed June 9, 2010) Includes bibliographical references (p. 93).
|
84 |
A geological model of shear zone gold deposits in the Pietersburg Greenstone Belt, South AfricaFraney, N J 17 April 2013 (has links)
The Pletersburg greenstone belt Is located In South Africa, about 300 km northeast of Johannesburg. It hosts a significant amount of gold mineralization and just over 1000 kg of gold have been produced from Its various reefs and secondary deposits. The greenstone belt is interpreted as an Archean ophiolite complex. It comprlses a volcano-sedimentary succession (the Pletersburg Group) which Is subdivided Into a basal greenstone sequence, interpreted as oceanic crust, and an upper sedimentary cover sequence. A number of major shear zones, which are thought to represent thrusts that developed during the subduction of the greenstone sequence, form an integral part of the stratigraphy . Four stages of deformation (D₁-D₄) and four phases of metamorphism (H₁-H₄) (three of which are correlatable with the peak stages of deformation) are recognized. The primary gold deposits are all shear zones related. but they are subdivided into greenstone, sedimentation and granIte-hosted types. Geographically, they occur In three distinct goldfields: Eerstellng, Roodepoort and Marbastad. The greenstone-hosted · Plenaar-Doreen shear complex Is In the Eersteiing goldfield and hosts eight gold occurrences. Within the complex, Girlie North Reef is the 640m-long "pay" section of the Girlie North shear zone. This reef is characterized, macroscopically, by a Quartz-carbonate-chlorite-sulphlde assemblage and, mlcroscoplcally, by the presence of tourmaline, arsenopyrlte and Au. Geochemical evidence Indicates that mineralizing fluids were H₂O and CO₂-bearing and rich In S, K and Al. The wall rock alteratlon was Isochemlcal but Is manifest as a change In mineralogy from a hornblende + plagioclase assemblage to an actlnollte/tremollte + Quartz + clay assemblage. This Is best developed In the hangIng wall of the reef and is thought to have been caused by hydrogen ion metasomatism. The Arsenopyrite Reef was one of the main sediment-hosted shear zone gold producers In the Harabastad goldfield. This reef Is Interpreted as the basal margin of a shear zone whose top contact Is probably represented by the Quartz Vein Reef. The shear zone consists predomonantly of quartz and carbonate, and the two "pay" reefs are characterized by tourmallne. arsenopyrite and Au. No wall rock alteration was identified In this study, Based on the mineralogy and geochemical signature of the Girlie Nortn Reef and the Arsenopyrite Reef, It Is proposed that both were formed at the $The Pletersburg greenstone belt Is located In South Africa, about 300 km northeast of Johannesburg. It hosts a significant amount of gold mineralization and just over 1000 kg of gold have been produced from Its various reefs and secondary deposits. The greenstone belt is interpreted as an Archean ophiolite complex. It comprlses a volcano-sedimentary succession (the Pletersburg Group) which Is subdivided Into a basal greenstone sequence, interpreted as oceanic crust, and an upper sedimentary cover sequence. A number of major shear zones, which are thought to represent thrusts that developed during the subduction of the greenstone sequence, form an integral part of the stratigraphy . Four stages of deformation (D₁-D₄) and four phases of metamorphism (H₁-H₄) (three of which are correlatable with the peak stages of deformation) are recognized. The primary gold deposits are all shear zones related. but they are subdivided into greenstone, sedimentation and granIte-hosted types. Geographically, they occur In three distinct goldfields: Eerstellng, Roodepoort and Marbastad. The greenstone-hosted · Plenaar-Doreen shear complex Is In the Eersteiing goldfield and hosts eight gold occurrences. Within the complex, Girlie North Reef is the 640m-long "pay" section of the Girlie North shear zone. This reef is characterized, macroscopically, by a Quartz-carbonate-chlorite-sulphlde assemblage and, mlcroscoplcally, by the presence of tourmaline, arsenopyrlte and Au. Geochemical evidence Indicates that mineralizing fluids were H₂O and CO₂-bearing and rich In S, K and Al. The wall rock alteratlon was Isochemlcal but Is manifest as a change In mineralogy from a hornblende + plagioclase assemblage to an actlnollte/tremollte + Quartz + clay assemblage. This Is best developed In the hangIng wall of the reef and is thought to have been caused by hydrogen ion metasomatism. The Arsenopyrite Reef was one of the main sediment-hosted shear zone gold producers In the Harabastad goldfield. This reef Is Interpreted as the basal margin of a shear zone whose top contact Is probably represented by the Quartz Vein Reef. The shear zone consists predomonantly of quartz and carbonate, and the two "pay" reefs are characterized by tourmallne. arsenopyrite and Au. No wall rock alteration was identified In this study, Based on the mineralogy and geochemical signature of the Girlie Nortn Reef and the Arsenopyrite Reef, It Is proposed that both were formed at the same time. Textural evidence Indicates that tourmaline, arsenopyrite and Au were all very late In the paragenesis of minerallzatlon. The presence of tourmaline also Indicates a probable granite association. It Is proposed that the maln gold mineralizing event was synchronous with the Intrusion of granitoids (and therefore also with (D₁-D₄) and (H₁-H₄) and that most of the Au was derived from felsic magma. Gold was partitioned Into a magmatic hydrothermal fluid and then transported into the greenstone belt as a chlorIde complex. These magmatiC fluids were channelled up shear zones whIch had already been mineralized with a quartz-carbonate-chlorlte - sulphide assemblage by previous metamorphic fluidS. generated during the dynamic (D₂-related) H₂-phase of metamorphism. The Au was then deposIted as the result of a change In a fluid variable, such as temperature, pH, f0₂, or the activity of Cl (some Au may have been transported In a sulphur complex and so the activity of reduced 5 could also have been Important).
|
85 |
The nature and origin of gold mineralization in the Tugela valley, Natal Structural and Metamorphic ProvinceDe Klerk, Ian Duncan January 1991 (has links)
The project area is situated within the Tugela Valley, located in the Northern Marginal Zone of the Natal Structural and Metamorphic Province, and this work outlines the different styles of gold mineralization found in the Tugela Valley. Two different styles have been recognized and both have economic significance:- 1) Epigenetic shear zone-hosted gold occurs in late-stage relatively undeformed thin quartz veins confined to shear zones, and is present in both the greenschist facies Natal Thrust Belt and the amphibolite facies Natal Nappe Complex. However the vast majority of these occurrences are concentrated within the thrust front (i.e. the Natal Thrust Belt). The gold grades (up to 7 g/t) and the hydrothermal alteration assemblages associated with the epigenetic deposits have been documented. 2) An as yet unrecognized occurrence of syngenetic gold mineralization is found associated with the sediment-hosted exhalative massive, to semi-massive, sulphides of the iThuma prospect, located within the amphibolite facies Natal Nappe Complex. Here gold (up to 3 g/t) is concentrated together with the main sulphide are, as well as some gold enrichment (230ppb) in the hydrothermally altered footwall feeder pipe. It is proposed that the epigenetic mineralization was formed as a consequence of the northward directed abduction of the major thrust slices of the Natal Nappe Complex. This increased the permeability of the rocks and provided channelways for the focussing of fluids. Deposition took place at the thrust front where metamorphic hydrothermal fluids interacted with meteoric water.
|
86 |
Surficial placer gold depositsMann, P L January 1994 (has links)
This review summarises the factors which control the formation and distribution of surficial gold placer deposits. Regional tectonic and climatic conditions as well as gold source are considered. The characteristics of eluvial, alluvial, marine, glacial and fluvioglacial gold placer deposits are described. Particular attention is paid to the gold grains within these placers. These gold grains have a distinctive morphology and chemical composition which reflect the manner in which they were transported, deposited and concentrated within the placers. The knowledge of the processes which lead to the formation and location of surficial gold placers is then used to guide exploration and target potential deposits, which can then be evaluated.
|
87 |
Guidelines to the evaluation of selectively mined, open pit gold deposits during the exploration stage of mine creationPelly, Frederick Douglas Peter January 1992 (has links)
This dissertation studies the evaluation of selectively mined, open pit gold deposits during the exploration stage of the mine's life. Since 1970 a large number of selectively mined, open pit gold mines have come into operation. The most common deposits include epithermal vein, mesothermal lode and laterite gold deposits. In general the deposits are characterized by small tonnages (1-20 million tonnes), relatively high grades (2-10 grams per tonne gold), submicroscopic to coarse gold, inexpensive mining, and both free milling and refractory ores.The key components that require evaluating during the exploration period are the deposit's geology, ore reserves, pit design, ore metallurgy and environmental impact. Feasibility studies are the main vehicle by which to report and guide the exploration programme. During the exploration period a company may undertake an initial (geological feasibility), second (preliminary mine feasibility) and third (final feasibility) delineation programme in order to gather sufficient data to justify a mine development decision. The responsibility of evaluating the mineral prospect lies primarily with the exploration geologist and mining engineer. Broad experience, a professional attitude, a thorough understanding of mining economics, and a high level of geological, engineering and technical skills are traits required by the evaluators. In order for mining companies to make sound investment decisions the geographical, geological, mining, metallurgical, environmental, marketing, political and financial aspects affecting the economic potential of the venture must be integrated so that the likely costs, risks and returns of the investment alternative are quantified. Ultimately, it is the economic analysis of these three items that determine whether the mineral prospect is developed into a mine I delineated further I retained until economic circumstances improve, or abandoned. To assess the costs, risks and returns, extensive use of the risk analysis is advocated throughout the exploration period . When combined with intelligent judgement of the intangible risk elements, the probabilistic distribution of discounted cash flows are invaluable in making sound investment decisions. However, the economic analysis is only as good as the information on which it is founded. Accurate and representative field data is the most important prerequisite to successfully evaluating and developing a new mine.
|
88 |
Gold-bearing volcanic breccia complexes related to carboniferous-permian magmatism, North Queensland, AustraliaMujdrica, Stefan January 1994 (has links)
Gold-bearing volcanic breccia complexes are the major sources of gold in the Tasman Fold Belt System in north Queensland. The Tasman Fold Belt System represents the site of continental accretion as a series of island-arcs and intra-arc basins with accompanying thick sedimentation, volcanism, plutonism, tectonism and mineralisation. In north Queensland, the fold belt system comprises the Hodgkinson-Broken River Fold Belt, Thomson Fold Belt, New England Fold Belt and the Georgetown Inlier. The most numerous ore deposits are associated with calc-alkaline volcanics and granitoid intrusivesof the transitional tectonic stage of the fold belt system. The formation and subsequent gold mineralisation of volcanic breccia complexes are related to Permo-Carboniferous magmatism within the Thomson Fold Belt and Georgetown Inlier. The two most important producing areas are at Mount Leyshon and Kidston mines, which are high tonnage, low-grade gold deposits. The Mount Leyshon breccia complex was emplaced along the contact between CambroOrdovician metasedimentary and metavolcanic rocks, and Ordovician-Devonian I-type granitoids of the Lolworth-Ravenswood Block. The Kidston breccia complex is located on a major lithological contact between the Early to Middle Proterozoic . Einasleigh Metamorphics and the Silurian-Devonian Oak River Granodiorite. The principal hosts to the gold mineralisation at the Mount Leyshon and Kidston deposits, are breccia pipes associated with several episodes of porphyry intrusives. The goldbearing magmatic-hydrothermal and phreatomagmatic breccias post-date the development of a porphyry-type protore. The magmatic-hydrothermal breccias were initially emplaced without the involvement of meteoric-hydrothermal fluids, within a closed system. Later magma impulses reached higher levels in the cooled upper magma chamber, where meteoric water invaded the fracture system. This produced an explosive emplacement of phreatomagmatic breccias, as seen at Mount Leyshon. Widespread sericitisation and pyrite mineralisation are common, with cavity fill, disseminated and fracturelveincontrolled gold and base metal sulphides. The Kidston and Mount Leyshon breccia complexes have hydrothermal alteration and mineralisation characteristics of the 'Lowell-Guilbert Model'. However, the argillic zone is generally not well defined. The gold travelled as chloride complexes with the hydrothermal fluids before being deposited into cavities and fractures of the breccias. Later stage epithermal deposits formed at the top of the breccia complexes that were dominantly quartz-adularia-sericite-type. The erosion, collapse and further intrusion of later porphyry phases allowed the upper parts of the breccia complexes to mix with the lower hydrothermal systems. Exploration for gold-related volcanic breccia complexes is directed at identifying hydrothermal alteration. This is followed by detailed ground studies including geological, mineralogical, petrological and geochemical work, with the idea of constructing a 'model' that can be tested with subsequent subsurface work (e.g. drilling). Geomorphology, remote sensing, geochemistry, geophysics, petrology, isotopes and fluid inclusions are recommended exploration techniques for the search of gold-bearing volcanic breccia complexes. Spectral remote sensing has especially become an important tool for the detection of hydrothermal alteration. Clay and iron minerals of the altered rock, within the breccia complexes, have distinctive spectral characteristics that can be recognisable in multispectral images from the Landsat thematic mapper. The best combination of bands, when using TM remote sensing for hydrothermally altered rock, are 3/5/7 or 4/5/7. The breccia complexes have exploration signatures represented as topographic highs, emplaced within major structural weaknesses, associated I-type granitic batholiths, early potassic alteration with overprint of sericitic alteration, and an associated radiometric high and magnetic low. The exploration for gold-bearing volcanic breccia complex deposits cannot be disregarded, because of the numerous occurrences that are now the major gold producers in north Queensland.
|
89 |
Sampling stream sediments for gold in mineral exploration, southern British ColumbiaDay, Stephen John January 1988 (has links)
The problems encountered by mineral explorationists when sampling stream sediments for gold were investigated by considering the sparsity of free gold particles and their tendency to form small placers at certain locations in the stream bed.
Fourteen 20-kg samples of -5-mm sediment were collected from contrasting energy and geochemical environments in five streams draining gold occurrences in southern British Columbia. The samples were sieved to six size fractions (420 µm to 52 µm) and gold content was determined by neutron activation analysis following preparation of two density fractions using methylene iodide. Gold concentrations were converted to estimated number of free gold particles and the Poisson probability distribution was used to show that much larger field samples (>100 kg of -1 mm screened sediment) would be required to reduce random variability due to nugget effects to acceptable levels. However, in a comparison of conventional sampling methods, the lowest probability of failing to detect a stream sediment gold anomaly is obtained using the sampling method described in this study.
Small-scale placer formation was investigated by collecting twenty 60-kg samples of -2-mm sediment from ten locations along five kilometres of Harris Creek in the Okanagan region, east of Vernon. Samples were prepared and analysed as described above though heavy-mineral concentrates were only prepared for two size fractions. Gold was found to be considerably enriched in sandy-gravel deposits compared to sand deposits, with the effect decreasing as sediment size decreased. The level of enrichment varies on the stream in response to changing channel slope and local hydraulic conditions. Gold anomaly dilution is apparent in sand deposits but not apparent in sandy-gravel deposits since gold is preferentially deposited in gravels as channel slope decreases. These results are presented in the framework of H.A. Einstein's sediment transport model.
Sediment collected from gravels may represent the best geochemical sample since placer-forming processes produce high gold concentrations, however in very high energy streams, the small quantities of fine sediment in gravels may lead to unacceptable nugget effects. In the latter case, a sample collected from a sand deposit is a satisfactory alternative. / Science, Faculty of / Earth, Ocean and Atmospheric Sciences, Department of / Graduate
|
90 |
The distribution and behaviour of gold in soils in the vicinity of gold mineralization, Nickel Plate mine, southern British ColumbiaSibbick, Steven John Norman January 1990 (has links)
Sampling of soils and till are conventional methods of gold exploration in glaciated regions. However, the exact nature of the residence sites and behaviour of gold within soil and till are poorly known. A gold dispersion train extending from the Nickel Plate mine, Hedley, southwest British Columbia, was investigated in order to determine the distribution and behaviour of gold within soils developed from till.
Three hundred and twelve soil, till and humus samples (representing LFH, A, B and C horizons) were collected from fifty-two soil pits and thirty-four roadcut locations within the dispersion train. Soil and till samples were sieved into four size fractions; the resultant -212 micron (-70 mesh) fraction of each sample was analysed for Au by FA-AAS. Humus samples were ground to -100 micron powder and analysed for Au by INAA. Based on the analytical results, each LFH, A, B and C horizon was subdivided into anomalous and background populations.
Detailed size and density fraction analysis was carried out on soil profiles reflecting anomalous and background populations, and a mixed group of samples representing the overlap between both populations. Samples were sieved to six size fractions; three of the size fractions (-420+212, -212+106, -106+53 microns) were separated into two density fractions using methylene iodide and analysed for Au by FA-AAS. The Au content of the -53 micron fraction was analysed by FA-AAS and cyanide extraction - AAS.
Results indicate that the Au content of soil profiles increase with depth while decreasing with distance from the minesite. Heavy mineral concentrates and the light mineral fraction Au abundances reveal that dilution by a factor of 3.5 occurs within the till over a distance of 800 metres. However, free gold within the heavy mineral fraction is both diluted and comminuted with distance. Recombination of size and density fractions indicate that the Au contents of each size fraction are equivalent; variation in Au abundance is not observed with a change in grain size. Seventy percent of the Au in the -53 micron fraction occurs as free gold.
Chemical activity has not altered the composition of gold grains within the soil profiles. Compositional and morphological differences between gold grains are not indicative of glacial transport distance or location within the soil profile. Relative abundances of gold grains between sample locations can be used as an indicator of proximity to the minesite. The sampling medium with the best sample representivity and contrast between anomalous and background populations is the -53 micron (-270 mesh) fraction of the C horizon. Geochemical soil sampling programs in the vicinity of the Nickel Plate mine should collect a minimum mass of 370 grams of -2000 micron (-2 mm) soil fraction in order to obtain 30 grams of the -53 micron fraction. / Science, Faculty of / Earth, Ocean and Atmospheric Sciences, Department of / Graduate
|
Page generated in 0.0256 seconds