• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • Tagged with
  • 14
  • 14
  • 14
  • 7
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Searching for Solar-Type Hypervelocity Stars

Hawkins, Keith A. 04 June 2013 (has links)
No description available.
2

LOW SURFACE BRIGHTNESS IMAGING OF THE MAGELLANIC SYSTEM: IMPRINTS OF TIDAL INTERACTIONS BETWEEN THE CLOUDS IN THE STELLAR PERIPHERY

Besla, Gurtina, Martínez-Delgado, David, van der Marel, Roeland P., Beletsky, Yuri, Seibert, Mark, Schlafly, Edward F., Grebel, Eva K., Neyer, Fabian 28 June 2016 (has links)
We present deep optical images of the Large and Small Magellanic Clouds (LMC and SMC) using a low cost telephoto lens with a wide field of view to explore stellar substructure in the outskirts of the stellar disk of the LMC (< 10 degrees from the LMC center). These data have higher resolution than existing star count maps, and highlight the existence of stellar arcs and multiple spiral arms in the northern periphery, with no comparable counterparts in the south. We compare these data to detailed simulations of the LMC disk outskirts, following interactions with its low mass companion, the SMC. We consider interaction in isolation and with the inclusion of the Milky Way tidal field. The simulations are used to assess the origin of the northern structures, including also the low density stellar arc recently identified in the Dark Energy Survey data by Mackey et al. at similar to 15 degrees. We conclude that repeated close interactions with the SMC are primarily responsible for the asymmetric stellar structures seen in the periphery of the LMC. The orientation and density of these arcs can be used to constrain the LMC's interaction history with and impact parameter of the SMC. More generally, we find that such asymmetric structures should be ubiquitous about pairs of dwarfs and can persist for 1-2 Gyr even after the secondary merges entirely with the primary. As such, the lack of a companion around a Magellanic Irregular does not disprove the hypothesis that their asymmetric structures are driven by dwarf-dwarf interactions.
3

HUBBLE SPACE TELESCOPE PROPER MOTIONS OF INDIVIDUAL STARS IN STELLAR STREAMS: ORPHAN, SAGITTARIUS, LETHE, AND THE NEW “PARALLEL STREAM”

Sohn, Sangmo Tony, van der Marel, Roeland P., Kallivayalil, Nitya, Majewski, Steven R., Besla, Gurtina, Carlin, Jeffrey L., Law, David R., Siegel, Michael H., Anderson, Jay 20 December 2016 (has links)
We present a multi-epoch Hubble Space Telescope (HST) study of stellar proper motions (PMs) for four fields along the Orphan Stream. We determine absolute PMs of several individual stars per target field using established techniques that utilize distant background galaxies to define a stationary reference frame. Five Orphan Stream stars are identified in one of the four fields based on combined color-magnitude and PM information. The average PM is consistent with the existing model of the Orphan Stream by Newberg et al. In addition to the Orphan Stream stars, we detect stars that likely belong to other stellar streams. To identify which stellar streams these stars belong to, we examine the 2d bulk motion of each group of stars on the sky by subtracting the PM contribution of the solar motion (which is a function of position on the sky and distance) from the observed PMs, and comparing the vector of net motion with the spatial extent of known stellar streams. By doing this, we identify candidate stars in the Sagittarius and Lethe streams, and a newly found stellar stream at a distance of similar to 17 kpc, which we tentatively name the "Parallel Stream." Together with our Sagittarius stream study, this work demonstrates that even in the Gaia era, HST will continue to be advantageous in measuring PMs of old stellar populations on a star-by-star basis, especially for distances beyond similar to 10 kpc.
4

The HST Large Programme on ω Centauri. II. Internal Kinematics

Bellini, Andrea, Libralato, Mattia, Bedin, Luigi R., Milone, Antonino P., Marel, Roeland P. van der, Anderson, Jay, Apai, Dániel, Burgasser, Adam J., Marino, Anna F., Rees, Jon M. 25 January 2018 (has links)
In this second installment of the series, we look at the internal kinematics of the multiple stellar populations of the globular cluster omega Centauri in one of the parallel Hubble Space Telescope (HST) fields, located at about 3.5 hal-flight radii from the center of the cluster. Thanks to the over 15 yr long baseline and the exquisite astrometric precision of the HST cameras, well-measured stars in our proper-motion catalog have errors as low as similar to 10 mu as yr(-1), and the catalog itself extends to near the hydrogen-burning limit of the cluster. We show that second-generation (2G) stars are significantly more radially anisotropic than first-generation (1G) stars. The latter are instead consistent with an isotropic velocity distribution. In addition, 1G stars have excess systemic rotation in the plane of the sky with respect to 2G stars. We show that the six populations below the main-sequence (MS) knee identified in our first paper are associated with the five main population groups recently isolated on the upper MS in the core of cluster. Furthermore, we find both 1G and 2G stars in the field to be far from being in energy equipartition, with eta(1G) = -0.007 +/- 0.026 for the former and eta(2G) = 0.074 +/- 0.029 for the latter, where eta is defined so that the velocity dispersion sigma(mu) scales with stellar mass as sigma(mu) proportional to m(-eta). The kinematical differences reported here can help constrain the formation mechanisms for the multiple stellar populations in omega Centauri and other globular clusters. We make our astro-photometric catalog publicly available.
5

Space Motions of the Dwarf Spheroidal Galaxies Draco and Sculptor Based on HST Proper Motions with a ∼10 yr Time Baseline

Sohn, Sangmo Tony, Patel, Ekta, Besla, Gurtina, van der Marel, Roeland P., Bullock, James S., Strigari, Louis E., van de Ven, Glenn, Walker, Matt G., Bellini, Andrea 06 November 2017 (has links)
We present new proper motion (PM) measurements of the dwarf spheroidal galaxies (dSphs) Draco and Sculptor using multiepoch images obtained with the Hubble Space Telescope ACS/WFC. Our PM results have uncertainties far lower than previous measurements, even those made with the same instrument. The PM results for Draco and Sculptor are (mu(W),mu(N))(Dra) = (-0.0562 +/- 0.0099, -0.1765 +/- 0.0100 mas yr(-1) and (mu(W), mu(N) )(Scl) = (-0.0296 +/- 0.0209, 0.1358 +/- 0.0214 mas yr(-1)) -1. The implied Galactocentric velocity vectors for Draco and Sculptor have radial and tangential components: (V-rad, V-tan)(Dra) =(-88.6, 161.4) +/- (4.4, 5.6) km s(-1) and (V-rad, V-tan )(Scl) = (72.6, 200.2)+/-(1.3, 10.8) km s(-1). We study the detailed orbital histories of both Draco and Sculptor via numerical orbit integrations. Orbital periods of Draco and Sculptor are found to be 1-2 Gyr and 2-5 Gyr, respectively, accounting for uncertainties in the Milky Way (MW) mass. We also study the influence of the Large Magellanic Cloud (LMC) on the orbits of Draco and Sculptor. Overall, the inclusion of the LMC increases the scatter in the orbital results. Based on our calculations, Draco shows a rather wide range of orbital parameters depending on the MW mass and inclusion/exclusion of the LMC, but Sculptor's orbit is very well constrained, with its most recent pericentric approach to the MW being 0.3-0.4 Gyr ago. Our new PMs imply that the orbital trajectories of both Draco and Sculptor are confined within the " Disk of Satellites," better so than implied by earlier PM measurements, and likely rule out the possibility that these two galaxies were accreted together as part of a tightly bound group.
6

Response of the Milky Way's disc to the Large Magellanic Cloud in a first infall scenario

Laporte, Chervin F. P., Gómez, Facundo A., Besla, Gurtina, Johnston, Kathryn V., Garavito-Camargo, Nicolas 01 1900 (has links)
We present N-body and hydrodynamical simulations of the response of the Milky Way's baryonic disc to the presence of the Large Magellanic Cloud during a first infall scenario. For a fiducial Galactic model reproducing the gross properties of the Galaxy, we explore a set of six initial conditions for the Large Magellanic Cloud (LMC) of varying mass which all evolve to fit the measured constraints on its current position and velocity with respect to the Galactic Centre. We find that the LMC can produce strong disturbances - warping of the stellar and gaseous discs - in the Galaxy, without violating constraints from the phase-space distribution of stars in the Solar Neighbourhood. All models correctly reproduce the phases of the warp and its antisymmetrical shape about the disc's mid-plane. If the warp is due to the LMC alone, then the largest mass model is favoured (2.5 x 10(11) M-circle dot). Still, some quantitative discrepancies remain, including deficits in height of Delta Z = 0.7 kpc at R = 22 kpc and Delta Z = 0.7 kpc at R = 16 kpc. This suggests that even higher infall masses for the LMC's halo are allowed by the data. A comparison with the vertical perturbations induced by a heavy Sagittarius dSph model (10(11) M-circle dot) suggest that positive interference with the LMC warp is expected at R = 16 kpc. We conclude that the vertical structure of the Galactic disc beyond the Solar Neighbourhood may jointly be shaped by its most massive satellites. As such, the current structure of the Milky Way suggests we are seeing the process of disc heating by satellite interactions in action.
7

Spatial distribution of galactic globular clusters : distance uncertainties and dynamical effects

Souza, Juliana Crestani Ribeiro de January 2017 (has links)
Fornecemos uma amostra de 170 Aglomerados Globulares Galácticos (GCs) e analisamos as propriedades de sua distribuição espacial. Utilizando um vasto catálogo de nuvens escuras identificadas, listamos os GCs que estão atrás de uma ou mais delas e que podem estar submetidos a uma extinção mais complexa do que a considerada por mapas de extinção. Valores de incerteza em distância são obtidos da literatura recente e comparados com valores derivados de uma fórmula de propagação de erro. GCs são agrupados de acordo com características inusitadas, tais como idades relativamente jovens ou possível conexão com núcleos de galáxias anãs, de forma que o efeito desses grupos pode ser isolado na distribuição espacial geral. Adicionalmente, computamos o centróide da distribuição de GCs e estudamos como esse se relaciona com a distância ao centro da Galáxia. Considerando que uma formação galáctica via colapso monolítico é supostamente simétrica, investigamos assimetrias e como os valores de incerteza das distâncias as modificam. Velocidades espaciais e um potencial Galáctico são empregados para verificar se quaisquer assimetrias na distribuição espacial são devidas a objetos em movimento coerente, ou se são somente efeitos transientes. / We provide a sample of 170 Galactic Globular Clusters (GCs) and analyse its spatial distribution properties. Using a comprehensive dust cloud catalogue, we list the GCs that are behind one or more identified dust clouds and could be subjected to a more complex extinction curve than extinction catalogues consider. Distance uncertainty values are gathered from recent literature and compared to values derived from an error propagation formula. GCs are grouped according to unusual characteristics, such as relatively young age or possible connection to dwarf galaxy nuclei, so that their effect on the general distribution can be isolated. Additionally, we compute the centroid of the GC distribution and study how it relates to the distance to the centre of the Galaxy. Considering that galactic formation via monolithic collapse is expected to be symmetrical, we probe asymmetries and how distance uncertainty values modify them. Spatial velocities and a Galactic potential are used to verify if any asymmetries in the spatial distribution are due to co-moving objects, or if they are merely transient effects.
8

Spatial distribution of galactic globular clusters : distance uncertainties and dynamical effects

Souza, Juliana Crestani Ribeiro de January 2017 (has links)
Fornecemos uma amostra de 170 Aglomerados Globulares Galácticos (GCs) e analisamos as propriedades de sua distribuição espacial. Utilizando um vasto catálogo de nuvens escuras identificadas, listamos os GCs que estão atrás de uma ou mais delas e que podem estar submetidos a uma extinção mais complexa do que a considerada por mapas de extinção. Valores de incerteza em distância são obtidos da literatura recente e comparados com valores derivados de uma fórmula de propagação de erro. GCs são agrupados de acordo com características inusitadas, tais como idades relativamente jovens ou possível conexão com núcleos de galáxias anãs, de forma que o efeito desses grupos pode ser isolado na distribuição espacial geral. Adicionalmente, computamos o centróide da distribuição de GCs e estudamos como esse se relaciona com a distância ao centro da Galáxia. Considerando que uma formação galáctica via colapso monolítico é supostamente simétrica, investigamos assimetrias e como os valores de incerteza das distâncias as modificam. Velocidades espaciais e um potencial Galáctico são empregados para verificar se quaisquer assimetrias na distribuição espacial são devidas a objetos em movimento coerente, ou se são somente efeitos transientes. / We provide a sample of 170 Galactic Globular Clusters (GCs) and analyse its spatial distribution properties. Using a comprehensive dust cloud catalogue, we list the GCs that are behind one or more identified dust clouds and could be subjected to a more complex extinction curve than extinction catalogues consider. Distance uncertainty values are gathered from recent literature and compared to values derived from an error propagation formula. GCs are grouped according to unusual characteristics, such as relatively young age or possible connection to dwarf galaxy nuclei, so that their effect on the general distribution can be isolated. Additionally, we compute the centroid of the GC distribution and study how it relates to the distance to the centre of the Galaxy. Considering that galactic formation via monolithic collapse is expected to be symmetrical, we probe asymmetries and how distance uncertainty values modify them. Spatial velocities and a Galactic potential are used to verify if any asymmetries in the spatial distribution are due to co-moving objects, or if they are merely transient effects.
9

Spatial distribution of galactic globular clusters : distance uncertainties and dynamical effects

Souza, Juliana Crestani Ribeiro de January 2017 (has links)
Fornecemos uma amostra de 170 Aglomerados Globulares Galácticos (GCs) e analisamos as propriedades de sua distribuição espacial. Utilizando um vasto catálogo de nuvens escuras identificadas, listamos os GCs que estão atrás de uma ou mais delas e que podem estar submetidos a uma extinção mais complexa do que a considerada por mapas de extinção. Valores de incerteza em distância são obtidos da literatura recente e comparados com valores derivados de uma fórmula de propagação de erro. GCs são agrupados de acordo com características inusitadas, tais como idades relativamente jovens ou possível conexão com núcleos de galáxias anãs, de forma que o efeito desses grupos pode ser isolado na distribuição espacial geral. Adicionalmente, computamos o centróide da distribuição de GCs e estudamos como esse se relaciona com a distância ao centro da Galáxia. Considerando que uma formação galáctica via colapso monolítico é supostamente simétrica, investigamos assimetrias e como os valores de incerteza das distâncias as modificam. Velocidades espaciais e um potencial Galáctico são empregados para verificar se quaisquer assimetrias na distribuição espacial são devidas a objetos em movimento coerente, ou se são somente efeitos transientes. / We provide a sample of 170 Galactic Globular Clusters (GCs) and analyse its spatial distribution properties. Using a comprehensive dust cloud catalogue, we list the GCs that are behind one or more identified dust clouds and could be subjected to a more complex extinction curve than extinction catalogues consider. Distance uncertainty values are gathered from recent literature and compared to values derived from an error propagation formula. GCs are grouped according to unusual characteristics, such as relatively young age or possible connection to dwarf galaxy nuclei, so that their effect on the general distribution can be isolated. Additionally, we compute the centroid of the GC distribution and study how it relates to the distance to the centre of the Galaxy. Considering that galactic formation via monolithic collapse is expected to be symmetrical, we probe asymmetries and how distance uncertainty values modify them. Spatial velocities and a Galactic potential are used to verify if any asymmetries in the spatial distribution are due to co-moving objects, or if they are merely transient effects.
10

The HST Large Programme on ω Centauri. III. Absolute Proper Motion

Libralato, Mattia, Bellini, Andrea, Bedin, Luigi R., Edmundo Moreno D., Fernández-Trincado, José G., Pichardo, Barbara, Marel, Roeland P. van der, Anderson, Jay, Apai, Dániel, Burgasser, Adam J., Marino, Anna Fabiola, Milone, Antonino P., Rees, Jon M., Watkins, Laura L. 09 February 2018 (has links)
In this paper, we report a new estimate of the absolute proper motion (PM) of the globular cluster NGC 5139 (omega Cen) as part of the HST large program GO-14118+ 14662. We analyzed a field 17 arcmin southwest of the center of omega Cen and computed PMs with epoch spans of similar to 15.1 years. We employed 45 background galaxies to link our relative PMs to an absolute reference-frame system. The absolute PM of the cluster in our field is (mu(alpha) cos delta, mu(delta))=(-3.341. 0.028, -6.557 +/- 0.043) mas yr(-1). Upon correction for the effects of viewing perspective and the known cluster rotation, this implies that for the cluster center of mass (mu(alpha) cos delta, mu(delta))=(-3.238. 0.028, -6.716 +/- 0.043) mas yr(-1). This measurement is direct and independent, has the highest random and systematic accuracy to date, and will provide an external verification for the upcoming Gaia Data Release 2. It also differs from most reported PMs for omega Cen in the literature by more than 5 sigma, but consistency checks compared to other recent catalogs yield excellent agreement. We computed the corresponding Galactocentric velocity, calculated the implied orbit of omega Cen in two different Galactic potentials, and compared these orbits to the orbits implied by one of the PM measurements available in the literature. We find a larger (by about 500 pc) perigalactic distance for omega Cen with our new PM measurement, suggesting a larger survival expectancy for the cluster in the Galaxy.

Page generated in 0.6185 seconds