• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • 1
  • Tagged with
  • 101
  • 101
  • 101
  • 86
  • 84
  • 79
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fatigue and fracture of a high strength, fully lamellar γ-tial based alloy

Halford, Timothy Paul January 2003 (has links)
No description available.
2

A study of variable geometry in advanced gas turbines

Roy-Aikins, J. E. A. January 1988 (has links)
The loss of performance of a gas turbine engine at off-design is primarily due to the rapid drop of the major cycle performance parameters with decrease in power and this may be aggravated by poor component performance. More and more stringent requirements are being put on the performance demanded from gas turbines and if future engines are to exhibit performances superior to those of present day: engines, then a means must be found of controlling engine cycle such that the lapse rate of the major cycle parameters with power is reduced. In certain applications, it may be desirable to vary engine cycle with operating conditions in an attempt to re-optimize performance. Variable geometry in key engine components offers the advantage of either improving the internal performance of a component or re-matching engine cycle to alter the flow-temperature-pressure relationships. Either method has the potential to improve engine performance. Future gas turbines, more so those for aeronautical applications, will extensively use variable geometry components and therefore, a tool must exist which is capable of evaluating the off-design performance of such engines right from the conceptual stage. With this in mind, a computer program was developed which can simulate the steady state performance of arbitrary gas turbines with or without variable geometry in the gas path components. The program is a thermodynamic component-matching analysis program which uses component performance maps to evaluate the conditions of the gas at the various engine stations. The program was used to study the performance of a number of cycles incorporating variable geometry and it was concluded that variable geometry can significantly improve the off-design performance of gas turbines.
3

The diffusion brazing of nickel-based oxide dispersion strengthened alloys

Markham, Andrew John January 1988 (has links)
No description available.
4

Heat transfer and fluid flow in the high pressure compressor drive cone cavity of an aeroengine

Kais, G. January 1998 (has links)
No description available.
5

Intake/engine flowfield coupling in turbofan engines

Joo, Won-Gu January 1994 (has links)
No description available.
6

Inlet distortion and turbofan engines

Lambie, David January 1989 (has links)
No description available.
7

Multivariable control of a propfan engine

Churchhouse, Stephen Paul January 1988 (has links)
No description available.
8

The influence of blade stacking on turbine losses

Harrison, Stephen January 1989 (has links)
No description available.
9

An investigation into the absolute life of an internal combustion engine

Hassaan, H. A. January 1983 (has links)
No description available.
10

The effects of reaction on axial compressor performance

Farmakalides, C. D. January 1992 (has links)
No description available.

Page generated in 0.2049 seconds