Spelling suggestions: "subject:"gastroinstestinal disease"" "subject:"gastrointestinal disease""
1 |
Quantitative Evaluation of the Carbon Isotopic Labelled Urea Breath Test for the Presence of Helicobacter pyloriGeyer, Johannes Alwyn 16 November 2006 (has links)
Faculty of Health Scicence
School of Medicine
0100107g
johannes.geyer@wits.ac.za / The 14C and 13C labelled urea breath tests (UBT) for detecting Helico-bacter pylori infection are well established but scope for improvement exists in both to reduce some of their shortcomings.
For this study, the 14C UBT investigation focussed on reducing the quantity of radioactive tracer that is administered to the subject un-dergoing this test, with the aim of lowering the radiation dose to the patient, reducing the impact to the environment and exempting the test from radioactive materials licensing. Wider acceptance, availabil-ity, affordability to lower socio-economic groups and third party medi-cal treatment payers and using readily available equipment were fac-tors considered when developing the method.
The principle of the method developed is to collect larger volume breath sample, quantitatively absorbing a defined volume of extracted breath CO2 in an efficient CO2 trapping agent using a specifically de-signed apparatus and measuring the activity with a low background β-spectrometer.
A reduction in the quantity of 14C labelled urea administered to the pa-tient was achieved. The method also reduced the counting error mar-gin at a lower detection limit, improving discrimination between H. py-lori positive and negative patients.
iii
The 13C UBT is a non-radioactive test however, it is substantially more expensive. The 13C UBT investigation aimed to determine whether commercially available un-enriched urea could be used thus reducing the cost of the 13C UBT.
A simple protocol with Isotope Ratio Mass Spectrometry (IRMS) for the measurement was used as opposed to the well-established 13C UBT protocol. The principle of the 13C UBT investigation was to detect the change of the breath δ13C (13C/12C) ratio after the administration of un-enriched urea with a δ13C different to the exhaled breath. Theoretical calculations showed that an administered dose of 500mg un-enriched urea with at least a 10‰ δ13C difference may be detectable using IRMS.
In vitro investigations confirmed that levels of 0.01 to 0.001‰ δ13C were detectable by IRMS. A change in the δ13C of a standard breath CO2 was confirmed for a range between 0.14 to 50% v/v mixed CO2 samples, i.e. the projected range for in-vivo investigation. Results from the in-vivo investigation however were not able to distinguish positive from negative H. pylori patients. The use of the 1000mg dose of urea appears to have caused saturation of the enzyme. It was con-cluded that some enrichment of the 13C is necessary or less urea be used.
|
Page generated in 0.109 seconds