Spelling suggestions: "subject:"gauged 1inear sigma model"" "subject:"gauged 1inear sigma godel""
1 |
Applications of gauged linear sigma modelsChen, Zhuo 17 May 2019 (has links)
This thesis is devoted to a study of applications of gauged linear sigma models. First, by constructing (0,2) analogues of Hori-Vafa mirrors, we have given and checked proposals for (0,2) mirrors to projective spaces, toric del Pezzo and Hirzebruch surfaces with tangent bundle deformations, checking not only correlation functions but also e.g. that mirrors to del Pezzos are related by blowdowns in the fashion one would expect. Also, we applied the recent proposal for mirrors of non-Abelian (2,2) supersymmetric two-dimensional gauge theories to examples of two-dimensional A-twisted gauge theories with exceptional gauge groups G_2 and E_8. We explicitly computed the proposed mirror Landau-Ginzburg orbifold and derived the Coulomb ring relations (the analogue of quantum cohomology ring relations). We also studied pure gauge theories, and provided evidence (at the level of these topologicalfield-theory-type computations) that each pure gauge theory (with simply-connected gauge group) flows in the IR to a free theory of as many twisted chiral multiplets as the rank of the gauge group. Last, we have constructed hybrid Landau-Ginzburg models that RG flow to a new family of non-compact Calabi-Yau threefolds, constructed as fiber products of genus g curves and noncompact Kahler threefolds. We only considered curves given as branched double covers of P^1. Our construction utilizes nonperturbative constructions of the genus g curves, and so provides a new set of exotic UV theories that should RG flow to sigma models on Calabi-Yau manifolds, in which the Calabi-Yau is not realized simply as the critical locus of a superpotential. / Doctor of Philosophy / This thesis is devoted to a study of vacua of supersymmetric string theory (superstring theory) by gauged linear sigma models. String theory is best known as the candidate to unify Einstein’s general relativity and quantum field theory. We are interested in theories with a symmetry exchanging bosons and fermions, known as supersymmetry. The study of superstring vacua makes it possible to connect string theory to the real world, and describe the Standard model as a low energy effective theory. Gauged linear sigma models are one of the most successful models to study superstring vacua by, for example, providing insights into the global structure of their moduli spaces. We will use gauged linear sigma models to study mirror symmetry and its heterotic generalization “(0, 2) mirror symmetry.” They are both world-sheet dualities relating different interpretations of the same (internal) superstring vacua. Mirror symmetry is a very powerful duality which exchanges classical and quantum effects. By studying mirror symmetry and (0, 2) mirror symmetry, we gain more knowledge of the properties of superstring vacua.
|
2 |
Chiral Rings of Two-dimensional Field Theories with (0,2) SupersymmetryGuo, Jirui 26 April 2017 (has links)
This thesis is devoted to a thorough study of chiral rings in two-dimensional (0,2) theories. We first discuss properties of chiral operators in general two-dimensional (0,2) nonlinear sigma models, both in theories twistable to the A/2 or B/2 model, as well as in non-twistable theories. As a special case, we study the quantum sheaf cohomology of Grassmannians as a deformation of the usual quantum cohomology. The deformation corresponds to a (0,2) deformation of the nonabelian gauged linear sigma model whose geometric phase is associated with the Grassmannian. Combined with the classical result, the quantum ring structure is derived from the one-loop effective potential. Supersymmetric localization is also applicable in this case, which proves to be efficient in computing A/2 correlation functions. We then compute chiral operators in general (0,2) nonlinear sigma models, and apply them to the Gadde-Gukov-Putrov triality proposal, which says that certain triples of (0,2) GLSMs should RG flow to nontrivial IR fixed points. As another application, we extend previous works to construct (0,2) Toda-like mirrors to the sigma model engineering Grassmannians. / Ph. D. / This thesis studies a mathematical concept called the chiral ring, which emerges from string theory. String theory is a conjectured theory that potentially unifies the existing fundamental physical laws. It has connections with many branches of mathematics, especially geometry. Spacetime is ten-dimensional in string theory, of which four dimensions are visible, and the other six are hidden at ordinary energy levels. The chiral ring encodes many geometric properties of the hidden part of spacetime. These properties can in turn affect the visible universe even at low energies. Research on chiral rings has primarily focused on a special class of geometries which have large symmetries and so are easier to handle. In order to tackle more general scenarios, we analyze the chiral rings corresponding to theories with only half the symmetry and give several new results and applications.
|
Page generated in 0.0578 seconds