• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • 1
  • Tagged with
  • 12
  • 6
  • 6
  • 6
  • 6
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Methods for understanding poorly exposed terranes : the interpretive geology and tectonothermal evolution of the western Gawler Craton / Jonathan Teasdale.

Teasdale, Jonathan, 1971- January 1997 (has links)
Two folded coloured maps and 2 coloured overlays in back cover pocket. / Bibliography: p. 183-142. / x, 182 p. : ill. (some col.), maps (some col.) ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Thesis (Ph.D.)--University of Adelaide, Dept. of Geology, 1998?
2

Methods for understanding poorly exposed terranes : the interpretive geology and tectonothermal evolution of the western Gawler Craton /

Teasdale, Jonathan, January 1997 (has links) (PDF)
Thesis (Ph. D.)--University of Adelaide, Dept. of Geology, 1998? / Two folded coloured maps and 2 coloured overlays in back cover pocket. Includes bibliographical references (p. 183-142).
3

Evaluation of the effects of a psychosocial intervention on mood, coping and quality of life in cancer patients

Reavley, Nicola. January 2006 (has links)
Thesis (PhD) -- Swinburne University of Technology, Faculty of Life and Social Sciences, 2006. / Submitted in fulfillment of the requirements for the Doctor of Philosophy, Faculty of Life and Social Sciences, Swinburne University of Technology, 2006. Typescript. Includes bibliographical references (p. 394-463).
4

Geochemical and isotopic characteristics of South Australian Proterozoic granites : implications for the origin and evolution of high heat-producing terrains / Narelle Neumann.

Neumann, Narelle L. (Narelle Louise) January 2001 (has links)
Includes copies of articles co-authored by the author during the preparation of this thesis. / Addendum attached to back cover. / Bibliography: leaves 125-135. / x, 135 leaves [98] : ill. (some col.), maps ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Focuses on the use of geophysical, geochemical and isotopic data in order to identify the timing and processes of crustal heat-producing element enrichment within South Australia. / Thesis (Ph.D.)--Adelaide University, Dept. of Geology and Geophysics, 2001
5

Geochemical and isotopic characteristics of South Australian Proterozoic granites : implications for the origin and evolution of high heat-producing terrains / Narelle Neumann.

Neumann, Narelle L. (Narelle Louise) January 2001 (has links)
Includes copies of articles co-authored by the author during the preparation of this thesis. / Addendum attached to back cover. / Bibliography: leaves 125-135. / x, 135 leaves [98] : ill. (some col.), maps ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Focuses on the use of geophysical, geochemical and isotopic data in order to identify the timing and processes of crustal heat-producing element enrichment within South Australia. / Thesis (Ph.D.)--Adelaide University, Dept. of Geology and Geophysics, 2001
6

Palaeo- to Mesoproterozoic evolution of the Gawler Craton, Australia: geochronological, geochemical and isotopic constraints.

Payne, Justin L. January 2008 (has links)
The Gawler Craton, South Australia, consists of late Archaean to early Mesoproterozoic igneous and supracrustal lithologies which preserve a deformation history lasting the duration of the Palaeoproterozoic. Understanding the evolution of the Gawler Craton is of significance in global supercontient reconstructions as it preserves evidence for earliest Palaeoproterozoic collisional orogenesis (c. 2460-2430 Ma) and, in conjunction with the North Australian Craton and Antarctica, has often been correlated to the western margin of Laurentia. In addition, the Gawler Craton is also host to the world-class Olympic Dam Fe-oxide-Cu-Au-U type-deposit (world's fourth largest Cu and largest U deposit) and related Fe-oxide-Cu-Au-U and Cu-Au mineralising systems. Despite the various geologically and economically important characteristics of the Gawler Craton there has traditionally been a poor understanding of the tectonothermal evolution of the Gawler Craton, in particular for the Palaeoproterozoic. This study addresses and refines the Palaeo-to Mesoproterozoic tectonothermal evolution of the Gawler Craton. This is done using geochemical, geochronological and isotopic analytical techniques to better understand selected supracrustal and igneous lithologies in the Gawler Craton and the orogenic events which have affected them. Largely unexposed metasedimentary lithologies of the northern Gawler Craton record multiple deformation events but have previously been virtually unconstrained with respect to their timing of protolith deposition and the age of deformation/metamorphism. New geochronological data demonstrate these metasedimentary lithologies were deposited during the time period -1750-1730 Ma before being metamorphosed and deformed during the Kimban (1730-1690 Ma) and Kararan (1570-1545 Ma) Orogenies. Detrital zircon geochronology and isotopic and geochemical characteristics of the sampled metasedimentary lithologies suggest a relatively similar protolith sedimentary succession was deposited across a large extent of the northern Gawler Craton. Detritus for the sedimentary protolith does not appear to have been sourced from the Gawler Craton. Instead the protolith it is more consistent with a North Australian Craton provenance suggesting a proximity between the northern Gawler Craton and North Australian Craton at the time of protolith deposition. The newly defined presence of the Palaeoproterozoic Kimban Orogeny in the northern Gawler Craton demonstrates the Kimban Orogeny to be a major, high-grade, craton-wide orogenic event. This finding contradicts previous suggestions that the northern Gawler Craton was accreted to the proto-Gawler Craton during the later Mesoproterozoic Kararan Orogeny. In addition, previous reconstruction models for the Palaeo-to early Mesoproterozoic often cite the felsic Tunkillia Suite (1690-1670 Ma), western and central Gawler Craton, as representing arc magmatism prior to the subsequent amalgamation of the Gawler Craton during the Kararan Orogeny. New geochemical and isotopic data for the Tunkillia Suite have allowed for re-examination of the tectonic setting for the petrogenesis of the Tunkillia Suite. Contrary to previous suggestions (based upon discrimination diagrams), the mineralogy, geochemistry and isotopic characteristics of the Tunkillia Suite are not consistent with arc-magmatism. Instead the Tunkillia Suite is interpreted to represent a late-to post-tectonic magmatic suite generated during the waning stages of the Kimban Orogeny. This petrogenesis further highlights the importance of the Kimban Orogeny as a fundamental tectonothermal event in the evolution of the Gawler Craton. Subsequent to the Kimban Orogeny, the Gawler Craton was thought to undergo a period of subduction-related magmatism (St Peter Suite) prior to the anorogenic magmatism of the voluminous felsic Gawler Range Volcanic (GRV) and Hiltaba Suite magmatism (1595-1575 Ma). New geochronological data for the ms-bi-gt-bearing peraluminous Munjeela Suite (1590-1580 Ma) have demonstrated the Hiltaba/GRV event was accompanied by significant crustal anatexis not associated with the Hiltaba/GRV magmatism. The Munjeela Suite and metasedimentary enclaves within it demonstrate that the Gawler Craton was likely to be undergoing compressive deformation and crustal thickening sometime during the petrogenesis of the Hiltaba/GRV magmatism. This suggests the Hiltaba/GRV magmatism did not occur in an anorogenic setting as previously proposed. The findings of this study are incorporated into a revised tectonothermal evolution of the Gawler Craton. This is used to discuss previous reconstruction models for Proterozoic Australia and provide a new reconstruction model of Australia and Antarctica during the Palaeoproterozoic. Important facets of the proposed model are links to the Archaean-Early Palaeoproterozoic Sask Craton in the Trans-Hudson Orogen, Laurentia, and the joint evolution of the North Australian and Gawler Cratons throughout the entire Palaeoproterozoic. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1330862 / Thesis (Ph.D.) - University of Adelaide, School of Earth and Environmental Sciences, 2008
7

Reworking the Gawler Craton: metamorphic and geochronologic constraints on palaeoproterozoic reactivation of the southern Gawler Craton, Australia.

Dutch, Rian A. January 2009 (has links)
The Gawler Craton in South Australia consists of an Archaean to Palaeoproterozoic core surrounded and intruded by a series of Palaeo- to Mesoproterozoic metasediments and igneous suites. The region has experienced a protracted c. 1700 Myr tectonic history from the Archaean through to the Mesoproterozoic, experiencing numerous cycles of deformation, magmatism and basin development. Despite hosting a number of mineral deposits, including the immense Olympic Dam iron oxide-copper-gold deposit, the tectonothermal evolution of the Gawler Craton remains poorly constrained. A significant ambiguity in our current understanding of the geological framework of the Gawler Craton revolves around the timing and spatial distribution of the tectonic events within the craton and their metamorphic evolution. This study addresses some of this ambiguity by unravelling the timing and tectonothermal evolution of the reworked southern Gawler Craton, using a combination of structural and metamorphic analysis, coupled with targeted geochronology. These methods have been applied to three locations representing different lithologies across the southern Gawler Craton. Putting absolute time into structural and metamorphic analysis is a vital tool for unravelling the development of ancient and modern orogenic systems. Electron Probe Micro-Analysis (EPMA) chemical dating of monazite provides a useful method of obtaining good precision age data from monazite bearing assemblages. This technique was developed at the University of Adelaide in order to constrain the timing of reworked assemblages from the southern Gawler Craton. EPMA measurements carried out on samples of known age, from Palaeoproterozoic to Ordovician, produce ages which are within error of the isotopically determined ages, indicating the validity of the developed setup. This technique, together with SHRIMP monazite and titanite and garnet Sm-Nd geochronology, was used on selected samples from the southern Gawler Craton to determine the timing of high-grade metamorphism and deformation. The results show that the Sleaford Complex records evidence of an early D₁event during the c. 2450 Ma Sleaford Orogeny recorded within structural boudins. The majority of the data indicates that the region underwent subsequent reworking and thorough overprinting during the 1725–1690 Ma Kimban Orogeny. In the Coffin Bay region, Palaeoproterozoic peraluminous granites of the Dutton Suite are reworked by a series of migmatitic and mylonitic shear zones during the Kimban Orogeny. Peak metamorphic conditions recorded in mafic assemblages indicate conditions of 10 kbar at 730°C. The post-peak evolution is constrained by partial to complete replacement of garnet – clinopyroxene bearing mafic assemblages by hornblende – plagioclase symplectites, which record conditions of c. 6 kbar at 700°C, implying a steeply decompressional exhumation path. The Shoal Point region consists of a series of reworked granulite-facies metapelitic and metaigneous units which belong to the late Archaean Sleaford Complex. Structural evidence indicates three phases of fabric development with D₁retained within boudins, D₂consisting of a series upright open to isoclinal folds producing an axial planar fabric and D₃, a highly planar vertical high-strain fabric which overprints the D₂ fabric. Geochronology constrains the D₁ event to the c. 2450 Ma Sleafordian Orogeny while the D₂the D₃events are constrained to the 1730–1690 Ma Kimban Orogeny. P-T pseudosections constrain the metamorphic conditions for the Sleafordian Orogeny to between 4.5–6 kbar and 750–780 °C. Subsequent Kimban-aged reworking reached peak metamorphic conditions of 8–9 kbar at 820–850 °C during the D₂ event. Followed by near isothermal decompression to metamorphic conditions <6 kbar and 790–850 °C associated with the development of the D₃high-strain fabric. The Pt Neill and Mine Creek regions are located in the core and on the flank of the crustal scale Kalinjala Shear Zone, which forms the main structural element of the poorly exposed Kimban Orogen. Samples record a similar structural development with a dextrally transpressive system resulting in a layer parallel migmatitic gneissic to mylonitic KS₁ fabric which was subsequently deformed and reworked by upright folds and discrete KD₂ east-side-down sub-solidus mylonitic shear zones during east-west compression. Geochronology constrains the timing of deformation and metamorphism to the Kimban Orogeny between 1720 and 1700 Ma. Metamorphic P-T analysis and pseudosections constrain the peak M₁ conditions in the core of the shear zone to 10–11 kbar at c. 800 °C reflecting lower crustal conditions at depths of up to 30 km. On the flank of the shear zone the M₁ conditions reached 6–7 kbar at 750 °C followed by sub-solidus reworking during KD₂ at conditions of 3–4 kbar at 600–660 °C, suggesting a maximum burial of <24 km. Cooling rates suggest that the core of the shear zone cooled at rates in excess of 40–80 °CMa⁻¹ while the flank underwent much slower cooling at < 10°CMa⁻¹. The rapid cooling and inferred decompression in the core of the shear zone reflects rapid burial and exhumation of lower-crustal material into the mid-crust along the Kalinjala Shear Zone. The absence of evidence for extension indicates that differential exhumation and the extrusion of lower-crustal material into the mid-crust was driven by transpression along the shear zone and highlights the role of transpression in creating large variations in vertical exhumation over relatively short lateral extents. Garnet is a vital mineral for determining constrained P-T-t paths as it can give both the P-T and t information directly. However, estimates of the closure temperature of the Sm-Nd system in garnet vary considerably leading to significant uncertainties in the timing of peak conditions. Five igneous garnets of varying size from an undeformed 2414 ± 6 Ma garnet – cordierite bearing s-type granite from the Coffin Bay region, that were subjected to high-T reworking during the Kimban Orogeny, have been dated to examine their diffusional behaviour in the Sm-Nd system. Garnets were compositionally profiled and then dated. A direct correlation exists between grain size and amount of resetting highlighting the effect of grain size on closure temperature. Major element and REE traverses reveal homogonous major element profiles and relict igneous REE profiles. The retention of REE zoning and homogenisation of major element zoning suggests that diffusion rates of REE’s are considerably slower than that of the major cations, in disagreement with recent experimental determinations of the diffusion rates of REE in garnet. The retention of REE zoning and the lack of resetting in the largest grains suggests that Sm-Nd closure temperature in garnet is a function of grain-size, thermal history and REE zoning in garnet. The findings of this study provide the first temporally constrained tectonothermal model of the evolution of the southern Gawler Craton. The P-T conditions obtained from the earliest D₁ fabric provide the first quantitative constraints on the P-T conditions of the southern Sleafordian Orogeny. The P-T-t evolution determined for the 1725–1690 Ma Kimban Orogeny indicate it developed along a clockwise P-T path, and dominates the structural and metamorphic character of the southern Gawler Craton. The large variations in exhumation over short lateral extents reflect the exhumation of lower crustal rocks during the Kimban Orogeny driven by transpression during the development of a regional transpressional ‘flower structure’. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1372052 / Thesis (Ph.D.) - University of Adelaide, School of Earth and Environmental Sciences, 2009
8

Reworking the Gawler Craton: metamorphic and geochronologic constraints on palaeoproterozoic reactivation of the southern Gawler Craton, Australia.

Dutch, Rian A. January 2009 (has links)
The Gawler Craton in South Australia consists of an Archaean to Palaeoproterozoic core surrounded and intruded by a series of Palaeo- to Mesoproterozoic metasediments and igneous suites. The region has experienced a protracted c. 1700 Myr tectonic history from the Archaean through to the Mesoproterozoic, experiencing numerous cycles of deformation, magmatism and basin development. Despite hosting a number of mineral deposits, including the immense Olympic Dam iron oxide-copper-gold deposit, the tectonothermal evolution of the Gawler Craton remains poorly constrained. A significant ambiguity in our current understanding of the geological framework of the Gawler Craton revolves around the timing and spatial distribution of the tectonic events within the craton and their metamorphic evolution. This study addresses some of this ambiguity by unravelling the timing and tectonothermal evolution of the reworked southern Gawler Craton, using a combination of structural and metamorphic analysis, coupled with targeted geochronology. These methods have been applied to three locations representing different lithologies across the southern Gawler Craton. Putting absolute time into structural and metamorphic analysis is a vital tool for unravelling the development of ancient and modern orogenic systems. Electron Probe Micro-Analysis (EPMA) chemical dating of monazite provides a useful method of obtaining good precision age data from monazite bearing assemblages. This technique was developed at the University of Adelaide in order to constrain the timing of reworked assemblages from the southern Gawler Craton. EPMA measurements carried out on samples of known age, from Palaeoproterozoic to Ordovician, produce ages which are within error of the isotopically determined ages, indicating the validity of the developed setup. This technique, together with SHRIMP monazite and titanite and garnet Sm-Nd geochronology, was used on selected samples from the southern Gawler Craton to determine the timing of high-grade metamorphism and deformation. The results show that the Sleaford Complex records evidence of an early D₁event during the c. 2450 Ma Sleaford Orogeny recorded within structural boudins. The majority of the data indicates that the region underwent subsequent reworking and thorough overprinting during the 1725–1690 Ma Kimban Orogeny. In the Coffin Bay region, Palaeoproterozoic peraluminous granites of the Dutton Suite are reworked by a series of migmatitic and mylonitic shear zones during the Kimban Orogeny. Peak metamorphic conditions recorded in mafic assemblages indicate conditions of 10 kbar at 730°C. The post-peak evolution is constrained by partial to complete replacement of garnet – clinopyroxene bearing mafic assemblages by hornblende – plagioclase symplectites, which record conditions of c. 6 kbar at 700°C, implying a steeply decompressional exhumation path. The Shoal Point region consists of a series of reworked granulite-facies metapelitic and metaigneous units which belong to the late Archaean Sleaford Complex. Structural evidence indicates three phases of fabric development with D₁retained within boudins, D₂consisting of a series upright open to isoclinal folds producing an axial planar fabric and D₃, a highly planar vertical high-strain fabric which overprints the D₂ fabric. Geochronology constrains the D₁ event to the c. 2450 Ma Sleafordian Orogeny while the D₂the D₃events are constrained to the 1730–1690 Ma Kimban Orogeny. P-T pseudosections constrain the metamorphic conditions for the Sleafordian Orogeny to between 4.5–6 kbar and 750–780 °C. Subsequent Kimban-aged reworking reached peak metamorphic conditions of 8–9 kbar at 820–850 °C during the D₂ event. Followed by near isothermal decompression to metamorphic conditions <6 kbar and 790–850 °C associated with the development of the D₃high-strain fabric. The Pt Neill and Mine Creek regions are located in the core and on the flank of the crustal scale Kalinjala Shear Zone, which forms the main structural element of the poorly exposed Kimban Orogen. Samples record a similar structural development with a dextrally transpressive system resulting in a layer parallel migmatitic gneissic to mylonitic KS₁ fabric which was subsequently deformed and reworked by upright folds and discrete KD₂ east-side-down sub-solidus mylonitic shear zones during east-west compression. Geochronology constrains the timing of deformation and metamorphism to the Kimban Orogeny between 1720 and 1700 Ma. Metamorphic P-T analysis and pseudosections constrain the peak M₁ conditions in the core of the shear zone to 10–11 kbar at c. 800 °C reflecting lower crustal conditions at depths of up to 30 km. On the flank of the shear zone the M₁ conditions reached 6–7 kbar at 750 °C followed by sub-solidus reworking during KD₂ at conditions of 3–4 kbar at 600–660 °C, suggesting a maximum burial of <24 km. Cooling rates suggest that the core of the shear zone cooled at rates in excess of 40–80 °CMa⁻¹ while the flank underwent much slower cooling at < 10°CMa⁻¹. The rapid cooling and inferred decompression in the core of the shear zone reflects rapid burial and exhumation of lower-crustal material into the mid-crust along the Kalinjala Shear Zone. The absence of evidence for extension indicates that differential exhumation and the extrusion of lower-crustal material into the mid-crust was driven by transpression along the shear zone and highlights the role of transpression in creating large variations in vertical exhumation over relatively short lateral extents. Garnet is a vital mineral for determining constrained P-T-t paths as it can give both the P-T and t information directly. However, estimates of the closure temperature of the Sm-Nd system in garnet vary considerably leading to significant uncertainties in the timing of peak conditions. Five igneous garnets of varying size from an undeformed 2414 ± 6 Ma garnet – cordierite bearing s-type granite from the Coffin Bay region, that were subjected to high-T reworking during the Kimban Orogeny, have been dated to examine their diffusional behaviour in the Sm-Nd system. Garnets were compositionally profiled and then dated. A direct correlation exists between grain size and amount of resetting highlighting the effect of grain size on closure temperature. Major element and REE traverses reveal homogonous major element profiles and relict igneous REE profiles. The retention of REE zoning and homogenisation of major element zoning suggests that diffusion rates of REE’s are considerably slower than that of the major cations, in disagreement with recent experimental determinations of the diffusion rates of REE in garnet. The retention of REE zoning and the lack of resetting in the largest grains suggests that Sm-Nd closure temperature in garnet is a function of grain-size, thermal history and REE zoning in garnet. The findings of this study provide the first temporally constrained tectonothermal model of the evolution of the southern Gawler Craton. The P-T conditions obtained from the earliest D₁ fabric provide the first quantitative constraints on the P-T conditions of the southern Sleafordian Orogeny. The P-T-t evolution determined for the 1725–1690 Ma Kimban Orogeny indicate it developed along a clockwise P-T path, and dominates the structural and metamorphic character of the southern Gawler Craton. The large variations in exhumation over short lateral extents reflect the exhumation of lower crustal rocks during the Kimban Orogeny driven by transpression during the development of a regional transpressional ‘flower structure’. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1372052 / Thesis (Ph.D.) - University of Adelaide, School of Earth and Environmental Sciences, 2009
9

High temperature felsic volcanism and the role of mantle magmas in proterozoic crustal growth : the Gawler Range volcanic province / by Kathryn P. Stewart.

Stewart, Kathryn January 1992 (has links)
Includes one folded map in pocket in back cover. / Includes bibliographical references. / iv, 214, [46] leaves, [10] leaves of plates : ill. (some col.), col. maps ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Thesis (Ph.D.)--University of Adelaide, Dept. of Geology and Geophysics, 1994
10

Structure and surface in the Gawler Ranges, South Australia / by Elizabeth M. Campbell.

Campbell, Elizabeth M. (Elizabeth Mary) January 1990 (has links)
Processed. / Bibliography: leaves 92-105 (1st sequence) / xix, 105, c. 100 leaves : ill. (some col.), maps (some folded) ; 30 cm. + 1 map : col. ; 100 cm. x 74 cm. folded to 25 x 19 cm. ; in envelope inside back cover. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Thesis (Ph.D.)--Dept. of Geography and the Dept. of Geology and Geophysics, University of Adelaide, 1991

Page generated in 0.0171 seconds