• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 81
  • 66
  • 11
  • 11
  • 9
  • 6
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 1
  • 1
  • Tagged with
  • 206
  • 206
  • 58
  • 48
  • 47
  • 43
  • 31
  • 23
  • 21
  • 20
  • 19
  • 19
  • 18
  • 17
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Développement d'une nouvelle plateforme végétale de production de protéines recombinantes par l'utilisation des plantes carnivores du genre Nepenthes / Development of a new plant expression system for recombinant protein production by use of carnivorous plants from Nepenthes genus

Miguel, Sissi 27 June 2013 (has links)
Résumé confidentiel / Not available
152

Modificação genética de cana-de-açúcar (Saccharum spp.) visando à produção de ácidos graxos conjugados / Genetic modification of sugarcane (Saccharum spp.) aiming the production of conjugated fatty acids

Bortoleto, João Fernando 09 November 2010 (has links)
Plantas transgênicas constituem interessantes alternativas para a produção de compostos com elevado valor agregado como polímeros industriais, proteínas farmacológicas e lipídios nutracêuticos. Como candidata à biofábrica, a cana-de-açúcar (Saccharum spp.) apresenta características agronômicas favoráveis, além de versatilidade de matéria-prima, que é empregada em fins tradicionais, como produção de álcool e açúcar, e até mesmo para geração de energia ou como forragem para alimentação de gado. Em nutrição animal, uma molécula bastante estudada é o ácido linoleico conjugado (CLA), que tem atividades anticarcinogênica, antidiabética, antiaterosclerose e moduladora do sistema imune e metabolismo de lipídios. O isômero t10,c12- CLA tem sido particularmente promissor na agropecuária por conta de inibição da síntese de gordura do leite e na melhoria do desempenho reprodutivo de vacas. Com o objetivo de avaliar a cana-de-açúcar como sistema biotecnológico para produção de CLA, o gene da isomerase do ácido linoleico de Propionibacterium acnes (pai) foi isolado e clonado, previamente caracterizado em Escherichia coli e, em seguida, utilizado na biolística de calos embriogênicos para regeneração de plantas transgênicas. No sistema procariótico, foi induzida a expressão de pai e a proteína heteróloga foi verificada como uma banda de 50 kDa, porém não houve alteração evidente do perfil de ácidos graxos da bactéria. Na cotransformação de cana-de-açúcar, o vetor pHA9, que contém o gene de seleção da neomicina fosfotransferase (nptII), foi bombardeado com uma das duas construções desenvolvidas com o promotor da poliubiquitina 1 de milho (pUbi1) dirigindo a expressão de pai adicionado ou não de sequência sinal da proteína de reparo de DNA recA para direcionamento para cloroplasto. Das cultivares CTC2 e IACSP9303046, foram obtidas eficiências de transformações de 2,2% e 1,7-7,1%, respectivamente. Um total de 156 plântulas foram regeneradas após regime de seleção com geneticina. Em seguida, 115 plântulas transgênicas foram identificadas por PCR para nptII e, entre essas, 29 e 48 foram PCRpositivas para pai e rec-pai, respectivamente. De 50 plantas aclimatizadas, 12 foram analisadas por Southern blot para nptII e 4 para pai, confirmando-se a transformação genética. Para comprovar a expressão de mRNA de pai, 27 plantas foram averiguadas por RT-PCR e RT-qPCR e indicaram produção de transcritos estudados. A análise de expressão das proteínas de folha por Western blot em 21 plantas selecionadas não produziu resultados conclusivos quanto à detecção de PAI. Essas mesmas foram analisadas por Cromatografia Gasosa, mas não foi detectado acúmulo de CLA. Embora seja possível a introdução e expressão do gene pai em cana-de-açúcar, é necessário avaliar em maior detalhe os fatores que possam afetar positivamente a produção de CLA, como tipo de tecido, compartimentos subcelulares para direcionamento proteico ou coexpressão de fosfolipases. / Transgenic plants are attractive alternatives for the production of high value compounds as industrial polymers, pharmacological proteins and nutraceutical lipids. As a candidate for biofactory, sugarcane presents favorable agronomic characteristics and versatility of raw material which is used for traditional purposes such as ethanol and sugar production and even for power generation or as forage feeding of cattle. In animal nutrition, a widely studied molecule is the conjugated linoleic acid (CLA), which has anticarcinogenic, antidiabetic, antiatherosclerosis and immune system and metabolism of lipids modulator activities. The isomer t10,c12-CLA has been particularly promising in agriculture because of inhibition of milk fat synthesis and improvement of the reproductive performance of cows. Aiming to evaluate the sugarcane as a system for biotechnological production of CLA, the linoleic acid isomerase gene from Propionibacterium acnes (pai) was isolated and cloned, previously characterized in Escherichia coli and then used for biolistic of embryogenic calli for regenerating transgenic plants. In the prokaryotic system, the expression of pai was induced and the heterologous protein was verified as a band of 50 kDa, but there was no obvious change in fatty acid profile of the bacterium. In cotransformation of sugarcane, pHA9 vector containing the selection gene neomycin phosphotransferase (nptII) was bombarded with one of the two constructions developed with the promoter of maize polyubiquitin 1 (pUbi1) driving the expression of pai, either added or not with the signal sequence of DNA repair protein recA for targeting to chloroplast. Cultivars CTC2 and IACSP93-3046 were obtained with transformation efficiencies of 2.2% and 1.7 a 7.1%, respectively. A total of 156 plantlets were regenerated after selection with geneticin regimen. After that, 115 transgenic plantlets were identified by PCR for nptII and among then, 29 and 48 were PCR-positive for pai and rec-pai, respectively. Of 50 acclimatized plants, 12 were analyzed by Southern blot for nptII and 4 for pai, confirming the genetic transformation. In order to prove the expression of pai mRNA, 27 plants were verified by RT-PCR and RT-qPCR and indicated the production of the studied transcripts. Expression analysis of leaf proteins by Western blot in 21 plants selected produced no conclusive results regarding the detection of PAI. Those were analyzed by gas chromatography and no accumulation of CLA was detected. Although it was possible to introduce and express the pai gene in sugarcane, it is necessary to evaluate in more detail the factors that may positively affect the production of CLA, as tissue type, subcellular compartments for protein targeting or coexpression of phospholipases.
153

Estudo de fatores que influenciam o processo de transformação genética em citros via Agrobacterium tumefaciens. / Study of factors that influence the citrus genetic transformation process via Agrobacterium tumefaciens.

Barbosa, Janaynna Magalhães 05 July 2002 (has links)
A transformação genética está se tornando uma importante ferramenta, dentro dos programas de melhoramento genético de citros, e uma alternativa para contornar barreiras naturais da espécie, que dificultam o desenvolvimento de novas variedades pelo melhoramento convencional. Entretanto, os protocolos utilizados para transformação genética de citros têm resultado num baixo número de plantas transgênicas. Com o objetivo de estudar fatores que possam influenciar o processo de transformação genética de citros via Agrobacterium tumefaciens analisou-se o efeito do uso de acetoseringona em diferentes etapas do processo, as condições de incubação dos explantes durante e após o período de co-cultivo e o tipo de corte do explante. Foram utilizados segmentos de epicótilo de plântulas germinadas in vitro da variedade de laranja doce ‘Hamlin’ (Citrus sinensis L. Osbeck.) e da variedade citrange ‘Carrizo’ (C. sinensis x Poncirus trifoliata Raf.), inoculados com a estirpe EHA 105 de A. tumefaciens, contendo o plasmídeo p35SGUSINT, com o gene de seleção que codifica a enzima neomicina fosfotransferase II (nptII) e o gene repórter uidA que codifica a enzima b-glucuronidase (gus). O protocolo básico para transformação genética foi com a inoculação dos explantes por 20 minutos, com o período de co-cultivo de 3 dias em me io de cultura suplementado com acetoseringona (100 mM) e transferidos para meio de cultura de seleção, constituído de meio de cultura EME, suplementado com BAP (1mg L -1 ), canamicina (100 mg L -1 ) e cefotaxime (500 mg L -1 ). As avaliações foram realizadas após 5-6 semanas de incubação, determinando-se o número de explantes com gemas adventícias, o número de gemas adventícias gus + e calculando-se a eficiência de transformação genética, definida pela relação entre o número de gemas gus + regeneradas e o número de explantes inoculados. Pelos resultados obtidos pôde-se observar uma maior eficiência de transformação genética para a variedade citrange ‘Carrizo’; e que a eficiência da transformação genética aumentou, principalmente para a variedade de laranja doce 'Hamlin', quando a incubação do material durante o período de co-cultivo foi feita sob temperaturas inferiores a 27 °C. A suplementação do meio de cultura de co-cultivo com acetoseringona depende do pH deste meio de cultura. A utilização de explantes seccionados longitudinalmente não se mostrou favorável devido ao crescimento excessivo da bactéria na superfície do explante. / Genetic transformation is an important biotechnological tool in citrus genetic breeding programs, and an alternative to overcome natural barriers to the development of new varieties, by conventional breeding. However, the protocols used for citrus genetic transformation have resulted in a low number of transgenic plants. Therefore, this research evaluated some factors that might influence citrus genetic transformation process via Agrobacterium tumefaciens, such as: the addition of acetosyringone in different steps of the process, the explant incubation conditions during and after the period of co-cultivation, and the explant type cut. Epicotyl segments from seedlings of 'Hamlin' sweet orange (Citrus sinensis L. Osbeck) and ‘Carrizo’ citrange (C. sinensis L. Osbeck x Poncirus trifoliata Raf.) were inoculated with EHA 105 strain of A. tumefaciens harboring the binary plasmid p35SGUSINT containing the selection gene for neomicyn phosphotransferase II (nptII) and the reporter gene uidA for b-glucuronidase (GUS). The basic protocol for genetic transformation included the explant inoculation for 20 minutes, and 3 days of co-cultivation in the culture medium supplemented with acetosyringone (100 mM). The epicotyl segments were transferred to selection culture medium, EME culture medium supplemented with BAP (1 mg L -1 ), kanamycin (100 mg L -1 ) and cefotaxime (500 mg L -1 ). The evaluations were done after 5-6 weeks of incubation, determining the number of explants with shoots, the number of gus + shoots, and calculating the genetic transformation efficiency, defined by the relation between the number of gus + shoots and the number of inoculated explants. The highest genetic transformation efficiency was observed in 'Carrizo' citrange. An increase of genetic transformation efficiency, mainly for the 'Hamlin' sweet orange occurred when the segments were incubated under temperatures below 27 o C. The supplementation of the co-cultivation culture medium with acetosyringone depends on pH value of itself. The use of explant sectioned did not favor transformation, probably due to the excessive bacterial growth on explant surface.
154

Uso do gene XyIA - Xilose Isomerase como agente de seleção na transformação genética de citros. / Use of the gene XylA - xilose isomerase a selection agent of in genetic transformation citrus.

Pereira, Gustavo Alves 06 December 2004 (has links)
O melhoramento genético das plantas cítricas, pelos métodos tradicionais, é dificultado por uma série de características da biologia de reprodução da espécie. Assim a utilização de técnicas modernas de biotecnologia, como a cultura de tecidos, a manipulação genética e a biologia molecular, têm se mostrado atrativas para o melhoramento genético da cultura. O objetivo deste trabalho é avaliar a transformação genética em variedades de laranja doce (Citrus sinensis) usando o gene xylA como gene de seleção. O trabalho foi realizado com a estirpe EHA 101 de Agrobacterium tumefaciens, contendo o plasmídeo pNOV1457, com o gene xylA. Os isolados da bactéria foram mantidos em meio de cultura YEP suplementado com os antibióticos (ácido nalidíxico, canamicina e estreptomicina). Segmentos de epicótilo foram incubados, por um período de 20 minutos, com a suspensão bacteriana. Após a inoculação, os segmentos foram secos em papel toalha estéril, e incubados em placa de petri (100 x 15 mm) contendo o meio de cultura EME + BAP (1 mg.L-1), em ausência de luz, à temperatura de 24 C, por um período de 3 dias, com acetoseringona e sem acetoseringona durante o cocultivo. Após o co-cultivo, os explantes foram transferidos para meio de cultura de seleção e regeneração, constituído do meio de cultura EME + BAP (1 mg.L-1) + cefotaxime (500 mg.L-1) + xilose (15 mg.L-1). A transformação genética foi confirmada pela detecção do gene xylA nas plantas regeneradas por PCR. A extração do DNA foi feita pelo método de Dellaporta et al. (1983) e as reações de PCR foram conduzidas em termociclador PTC-100 (MJ Research) utilizandose "primers" específicos para detecção do gene xylA. Analisando os dados obtidos verificou-se que foram obtidas plantas transgênicas, utilizando-se o sistema xylA/xilose, de 3 variedades de laranja doce Hamlin, Valência e Natal, com uma eficiência de transformação genética variando de 1 - 3%, em função do experimento e da variedade. A atividade da enzima xilose isomerase foi confirmada pelo teste clorofenol vermelho. Esse trabalho concluiu que é possível a regeneração de plantas transgênicas de variedades de laranja doce utilizando-se o sistema de seleção positiva xylA/xilose. / The genetic improvement of the citric plants, by traditional methods, is made difficult by a series species biology reproduction characteristics. The use of modern biotechnology techniques, as tissue culture, the genetic manipulation and molecular biology, have shown attractive for the culture genetic improvement. The objective of this work was to evaluate the genetic transformation in varieties of sweet orange (Citrus sinensis) using the gene xylA as selection gene. The work was carried out with the EHA 101 Agrobacterium tumefaciens, containing the plasmid pNOV1457, whith the gene xylA. The bacterium was culture in YEP media supplemented with antibiotics (nalidixic acid, kanamicyn e streptomycin). Epicotyl segments were incubated, for 20 min, with the bacterial suspension. After inoculation, the segments were dry in a sterile paper, and incubated in a petri dish (100 x 15mm) containing the medium EME + BAP (1 mg.L-1), in dark, at the temperature of 24 °C, for a period of 3 days, with and without acetoseryngone during the co-culture period. After the co-culture, the explants were transferred to culture medium of selection and regeneration, consisting of medium EME + BAP (1 mg.L-1) + cefotaxime (500 mg.L-1) + xylose (15 mg.L-1). The genetic transformation was confirmed by the gene detection by PCR. The DNA extraction was done by Dellaporta et al. (1983). PCR reactions were done in a thermal cycler PTC-100 (MJ Research) using specific "primers" for gene xylA detection. The enzyme xilose isomerase activity was confirmed by the red clorofenol test. It is possible to regenerate sweet orange transgenic plants using the positive select system based on xylA gene, of 3 sweer orange varieties Hamlin, Valencia and Natal, with a genetic transformation efficiency of 1-3%.
155

Transformação genética de citros com os genes bacteriopsina (bO), cecropina e gus. / Genetic transformation of citrus with bacterio-opsin (bo), cecropin and gus genes.

Azevedo, Fernando Alves de 28 June 2005 (has links)
A utilização de técnicas biotecnológicas como a transformação genética, tem auxiliado os programas de melhoramento de plantas perenes. Essa técnica já é utilizada em citros com sucesso, principalmente para obtenção de plantas tolerantes a doenças. O presente trabalho teve três objetivos: 1.transformação genética do porta-enxerto limão ‘Cravo’ com o gene bacteriopsina (bO), relacionado com ativação de mecanismos de defesa da planta como morte programada de células e produção de ácido salicílico, com o intuito de aumentar a resistência a gomose de Phytophthora; 2. transformação genética das principais variedades copas de laranja doce (‘Hamlin’, ‘Valência’, ‘Natal’ e ‘Pêra’) com o gene da cecropina. Esse gene possui atividade antibacteriana, tornando-se possível fonte de resistência a cancro cítrico e clorose variegada dos citros e; 3. avaliar a viabilidade da utilização de um promotor específico de xilema em citros. As transformações foram efetuadas pelo sistema indireto via Agrobacterium tumefaciens, utilizando segmentos juvenis de epicótilo. Testes moleculares foram realizados e confirmaram a inserção dos genes descritos acima. No caso do limão ‘Cravo’ duas plantas foram regeneradas. Na transformação das variedades copa com o gene da cecropina, diferentes taxas de eficiência foram observadas, sendo que melhores resultados foram obtidos para laranja ‘Valência (3,3-4,5 %) e laranja ‘Hamlin’ (2,5-3,0 %) em comparação com laranja ‘Natal’ (1,6-2,0 %) e laranja ‘Pêra’ (0,5 %). Plantas de laranja ‘Valência’ também foram transformadas com o promotor da fenilalamina amônia-liase. Além das transformações, dois bioensaios foram instalados: um com as plantas de limão ‘Cravo’, visando avaliar resistência a gomose de Phytophthora e outro, com laranja ‘Valência’ transformada com o gene da cecropina. No primeiro caso, propagaram-se por enxertia plantas transgênicas de limão ‘Cravo’ e, após seis meses fez-se a inoculação com Phytophtora nicotianae, que consistiu na introdução de agulha contaminada com propágulos do patógeno, numa altura de 10 cm acima da região da enxertia. Vinte e cinco dias após aferiu-se o comprimento e área das lesões, bem como observou-se a presença de goma. Comparando-se o desempenho das duas linhagens transgênicas com o limão ‘Cravo’ não transformado, uma delas apresentou menor área a lesão. Já para as plantas com o gene cecropina um ensaio com folha destacada foi realizado, em que as mesmas foram perfuradas com auxílio de uma agulha e, posteriormente, pulverizadas com uma suspensão da bactéria Xanthomonas axonopodis pv. citri e, mantidas em tubo de centrífuga (50 mL), onde os pecíolos permaneciam em contato com água estérial (2 mL). Avaliou-se o período necessário para o aparecimento das primeiras lesões e o tamanho das lesões após quinze dias. Uma planta transgênica apresentou maior resistência perante a testemunha. Nas plantas transformadas com o promotor da fenilalamina amônia-liase, testes para observar a expressão do gene GUS foram realizados e comprovaram a capacidade desse promotor em direcionar os genes para a região dos vasos condutores. Os resultados obtidos nesse trabalho são pioneiros em citros, utilizando os genes bO, cecropina e o promotor PAL. / Application of modern biotechnology techniques, as genetic transformation, has helped breeding programs of perennial plant species. This technique is already successfully used in citrus in several countries, mostly to the production of more disease-tolerant plants. Present work had three objectives as it follows: 1. genetic transformation of Rangpur lime rootstock with the bacterio-opsin(bO) gene, related to the activation of plant defense mechanisms such as programmed cell death and salicylic acid production, towards the increase of the tolerance to Phytophthora gummosis; 2. genetic transformation of main sweet orange scion varieties (Hamlin, Valência, Natal and Pêra) with cecropin gene. This gene products present antibacterial activity, becoming a possible source for citrus canker and variegated chlorosis tolerance and. 3. to test the viability of the use of a xylem-specific promoter (phenylalanine ammonia lyase) in citrus. Transformations were performed by direct system via Agrobacterium tumefaciens, using juvenile citrus epicotyl segments, which showed to be feasible in citrus, once transgenic plants were obtained for all proposed genes. Molecular tests were conduced and confirmed the insertion of the genes described above. In the case of Rangpur lime two plants were regenerated; in the transformation of canopy varieties with cecropin gene, different efficiency rates were observed, and the best results were obtained for Valencia sweet orange (3.3-4.5 %) and Hamlin sweet orange (2.5-3.0 %), compared to Natal sweet orange (1.6-2.0 %) and Pêra sweet orange (0.5 %). Plants of Valência variety were also transformed with the phenylalanine ammonia lyase promoter, resulting in 15 diverse transformation events. Beyond transformations, two bioessays were installed: one with Rangpur lime plants, aiming to evaluate tolerance to gummosis caused by Phytophthora, and another with Valência sweet orange transformed with cecropin gene. In the first case Rangpur lime transgenic plants were propagated through grafting and, after six months, were inoculated with Phytophtora, by introducing a contaminated needle containing the pathogen propagules, at 10 cm above the grafting region; 25 days later the experiment evaluation was conduced, consisting on measuring the lenght and area of lesions, as well as on the observation of gum. Comparing the performance of Rangpur lime transgenic lines with that of a non-transformed Rangpur lime, one plant presented higher tolerance to gummosis. Although, for the cecropin-gene plants, it was conduced an essay with destached leaves, where these were punched by a needle and then sprayed with a bacterial suspension of Xanthomonas axonopodis pv. citri; they were kept in centrifuge tubes (50 mL), where petioles mantained contact with sterile water (2 mL). After 15 days, the necessary period to the first lesions appearance and their size were evaluated. One transgenic plant showed a higher tolerance in comparison to control. In plants transformed with phenylalanine ammonia lyase promoter, tests to observe gus gene expression were performed and comproved its ability to promote and direct gene activity to conductive vessels. This work results are the first in citrus using bO and cecropin genes, and PAL promoter.
156

Promotores específicos para expressão gênica no floema na transformação genética de citros / Specific promoters for gene expression in the phloem in citrus genetic transformation

Miyata, Luzia Yuriko 10 February 2010 (has links)
O Huanglongbing (HLB) é uma das doenças mais ameaçadoras para citricultura mundial e, até o momento, não foi encontrada resistência na base genética do gênero Citrus. A doença é causada pela bactéria Candidatus Liberibacter spp., endêmica de floema. Portanto, na busca por uma planta transgênica resistente ao HLB é desejável avaliar construções gênicas em que o gene de interesse se expresse preferencialmente na região em que a bactéria coloniza a planta, ou seja, no floema. Assim, o objetivo deste trabalho foi a obtenção de plantas transgênicas via Agrobacterium tumefaciens, de citrange Carrizo [Poncirus trifoliata (L.) Raf. x Citrus sinensis (L.) Osbeck] e de laranja doce [Citrus sinensis (L.) Osbeck] cultivares Hamlin, Valência e Pêra, contendo o gene uidA (GUS) sob o controle dos promotores Citrus pholem protein 2 (CsPhP2), Arabidopsis thaliana pholem protein 2 (AtPhP2) e Arabidopsis thaliana sucrose transporter 2 (AtSuT2), para verificar se esses promotores regulam a expressão do gene repórter na região do floema. Foram utilizados segmentos de epicótilo de plântulas germinadas in vitro e como agente de seleção de regeneração de plantas transgênicas foi utilizado o gene nptII, que confere resistência ao antibiótico canamicina. Dos brotos regenerados foi coletada uma amostra de material para a realização do ensaio histoquímico com X-GLUC. Os brotos que formaram coloração azulada confirmaram a integração do transgene, sendo esses enxertados em porta enxertos previamente germinados e estiolados in vitro. A partir do número de explantes introduzidos, número explantes responsivos, número de brotos regenerados e número de brotos regenerados GUS positivos calculou-se a eficiência de transformação genética dos experimentos. Para a confirmação da transformação genética de laranja Hamlin foram realizadas análises de PCR e Southern blot de três plantas GUS positivas aclimatizadas. Também foram feitos cortes histológicos manuais para melhor visualização da reação histoquímica de GUS das plantas de laranja Hamlin Southern blot positivas. Todos os experimentos de transformação regeneraram pelo menos um broto GUS positivo. As plantas de laranja Hamlin analisadas por PCR e Southern blot analisadas foram confirmadas como transformadas com uma inserção do transgene. Plantas nas quais foram realizados cortes histológicos indicaram expressão diferencial das construções gênicas no floema. / Huanglongbing (HLB) is one of the most threatening diseases to worldwide citriculture and till the present moment, no resistance has been found in citrus genetic basis. This disease has Candidatus Liberibacter spp. as the pathogenic agent, an endemic phloem bacterium. Therefore, in the search for a transgenic plant resistant to HLB, it is desirable to evaluate constructions in which the gene of interest is expressed, preferentially, in tissues where the bacteria grow, i.e., in the phloem. Therefore, this work aimed to obtain transgenic plants of Carrizo citrange [Poncirus trifoliata (L.) Raf. x Citrus sinensis (L.) Osbeck], and of Hamlin, Valencia, and Pera sweet oranges [Citrus sinensis (L.) Osbeck], via Agrobacterium tumefaciens, containing uidA (GUS) gene, controlled by the promoters Citrus pholem protein 2 (CsPhP2), Arabidopsis thaliana pholem protein 2 (AtPhP2) and Arabidopsis thaliana sucrose transporter 2 (AtSuT2), in order to check if these promoters drive the reporter gene expression in the phloem. For the transformation, in vitro germinated seedlings epicotil segments were used. The gene nptII, which confers resistance to the antibiotic kanamycin, was used as the selective system. From the regenerated shoots, a tissue sample was collected to perform the X-GLUC histochemical analysis. The regenerated shoots colored in blue were considered transgenic, and these were grafted on in vitro grown rootstocks. The transformation efficiency of each experiment was calculated based on the number of introduced explants, responsive explants, number of regenerated shoots, and number of GUS positive regenerated shoots. In order to confirm the genetic transformation of Hamlin sweet orange, PCR and Southern blot analyses of three positive GUS acclimatized plants were performed. Anatomic slices for better visualization of blue color formed by GUS reaction were also made. All transformation experiments regenerated at least one GUS positive shoot. Plants of Hamlin sweet orange analyzed by PCR and Southern blot are transformed and have one transgene insertion. Anatomical analyses indicated preferential expression of the transgenes in the phloem.
157

Otimiza??o do sistema de multiplica??o in vitro por meio do m?todo Scalp e indu??o do aumento da variabilidade gen?tica pelo uso de mutag?nico qu?mico e da transforma??o gen?tica em bananeira (Musa spp., AAB)

Oliveira, Maria Maiany de 29 March 2017 (has links)
Submitted by Ricardo Cedraz Duque Moliterno (ricardo.moliterno@uefs.br) on 2017-10-05T21:58:20Z No. of bitstreams: 1 TESE- MARIA MAIANY DE OLIVEIRA.pdf: 1486275 bytes, checksum: 077fcda867394bf1737e7758d79af6a2 (MD5) / Made available in DSpace on 2017-10-05T21:58:20Z (GMT). No. of bitstreams: 1 TESE- MARIA MAIANY DE OLIVEIRA.pdf: 1486275 bytes, checksum: 077fcda867394bf1737e7758d79af6a2 (MD5) Previous issue date: 2017-03-29 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior - CAPES / Banana (Musa spp.) is considered one of the most important fruits in world trade due to its nutritional and economic potential.But although there is a large number varieties on the market, the banana is still affected by many diseases.The application of the method of crosses in this species is very difficult because the majority of cultivated varieties is triploid presenting low fertility. In this case, it is necessary to use biotechnology and its tools applied to non-conventional genetic improvement to develop new varieties that have resistance to their different types of pathogens.This work was carried out with the objective of adapting the technique of obtaining embryogeniccallus of banana by means of the Scalp method in cultivars Brazilian Ma?? and Pacovan, adjusting the processes of induction of meristematic structures and multiplication of shoots and induce increased genetic variability by in vitro mutagenesis using the chemical agent ethylmethanesulfonate and, of the genetic transformation by the bombardment of microparticles. Was evaluated the callus formation, the effect of mutagenic in the in vitro cultivation of shoots and the effects of genetic transformation on shoot resistance in selection medium containing the herbicide Imazapyr. The results showed that the merystematic structures obtained have the capacity to origin callus with only one month of cultivation, and both cultivars developed friable callus with average values above 90%.The efficiency of this method was evidenced by the high capacity of induction of friable callus in the two evaluated cultivars but also by the rapidity in the process of obtaining calluses, being the first study of adaptation of the methodology for Brazilian banana cultivars.On the other hand, the evaluation of the mutation induction allowed to conclude that the survival and the capacity of bud formation decreased as a function of the increase of the concentration and the immersion time in the ethylmethanesulfonate.The surviving plants underwent a sorting with the fusaric acid selective agent in which it was possible to regenerate in vitro plants of the cultivars submitted to treatment with the mutagen and to select possible mutants with fusaric acid resistance for cultivarsMa?? and Pacovan.And the genetic transformation method proved efficient in the regeneration of shoots resulting in high values of survival and multiplication, where possible transgenic plants of banana cv. Ma?? were obtained after selection of resistance to the herbicide.Therefore, it is concluded that all the material produced, both in the mutagenic phase and in the genetic transformation, presents a greater genetic variability potentially applicable to the banana improvement. / A banana (Musa spp.) ? considerada um dos mais importantes frutos no com?rcio mundial em virtude seu potencial nutritivo e econ?mico. Mas, apesar de existir um grande n?mero de variedades no mercado, a bananeira ainda ? acometida por muitas doen?as. A aplica??o do m?todo de cruzamentos nesta esp?cie ? muito dif?cil, pois a maioria das variedades cultivadas ? triploide apresentando baixa fertilidade. Nesse caso, faz-se necess?rio o uso da biotecnologia e de suas ferramentas aplicadas ao melhoramento gen?tico n?o convencional para desenvolver novas variedades que tenham resist?ncia aos seus diferentes tipos de pat?genos. Este trabalho foi realizado com os objetivos de adaptar a t?cnica de obten??o de calos embriog?nicos de bananeira por meio do m?todo Scalp nas cvs. Ma?? e Pacovan, ajustando os processos de indu??o de estruturas polimeristem?ticas ede multiplica??o de brotos e induzir o aumento da variabilidade gen?tica por meio da mutag?nese in vitro com o uso do agente qu?mico etilmetanosulfonato e, da transforma??o gen?tica pelo bombardeamento de micropart?culas.Foram avaliados os calos formados, o efeito do mutag?nico no cultivo in vitro de brotos e, os efeitos da transforma??o gen?tica quanto ? resist?ncia dos brotos em meio de sele??o contendo o herbicida Imazapyr. Os resultados mostraram que as estruturas polimeristem?ticas obtidas t?m capacidade de originar calos com apenas um m?s de cultivo e, ambas as cultivares desenvolveram calos fri?veis com rendimentos m?dios acima de 90%. A efici?ncia desse m?todo foi comprovada pela alta capacidade de indu??o de calos fri?veis nas duas cultivares avaliadas, como tamb?m pela rapidez no processo de obten??o de calos, sendo este o primeiro estudo de adapta??o da metodologia para as cultivares Ma?? e Pacovan. Por outro lado, a avalia??o da indu??o de muta??o permitiu concluir que a sobreviv?ncia e a capacidade de forma??o de brotos diminu?ram em fun??o do aumento da concentra??o e do tempo de imers?o no etilmetanosulfonato. As plantas sobreviventes passaram por uma triagem com o agente seletivo ?cido fus?rico na qual, foi poss?vel regenerar plantas in vitro das cultivares submetidas ao tratamento com o mutag?nico e selecionar poss?veis mutantes com resist?ncia ao ?cido fus?rico para as cvs. Ma?? e Pacovan. O m?todo da transforma??o gen?tica mostrou-se eficiente na regenera??o dos brotos resultando em altos valores de sobreviv?ncia e multiplica??o, onde poss?veis plantas transg?nicas de bananeira cv. Ma?? foram obtidas, ap?s a sele??o de resist?ncia ao herbicida. Portanto, conclui-se que todo material produzido, tanto na fase mutag?nica quanto na transforma??o gen?tica, apresenta uma maior variabilidade gen?tica potencialmente aplic?vel ao melhoramento da bananeira.
158

Transformação genética de laranja doce (Citrus sinensis L. Osbeck) com o gene hrpN (harpina) e avaliação da resistência ao cancro cítrico (Xanthomonas axonopodis pv. citri) / Sweet orange (Citrus sinensis L. Osbeck) genetic transformation with the hrpN gene (harpin) and evaluation for citrus canker (Xanthomonas axonopodis pv. citri) resistance

Barbosa-Mendes, Janaynna Magalhães 30 March 2007 (has links)
A indústria dos citros é de grande importância econômica e social para o Brasil, que é considerado o maior produtor e exportador de suco concentrado de laranja do mundo. Porém, sérios problemas relacionados a doenças têm afetado a produção e qualidade dos citros. Com o desenvolvimento da engenharia genética e a clonagem de genes relacionados à resistência a doenças em plantas, a transformação genética têm se mostrado uma ferramenta auxiliar a programas de melhoramento genético de citros. O objetivo deste trabalho foi a obtenção de plantas transgênicas de laranja doce das variedades ‘Hamlin’, ‘Valência, ‘Natal’ e ‘Pêra’ expressando o gene hrpN, sob o controle do promotor Pgst1, induzível pelo patógeno. A avaliação da resposta de plantas transgênicas da variedade ‘Hamlin’ contra o agente causal do cancro cítrico, a bactéria Xanthomonas axonopodis pv. citri, também foi realizada. Segmentos de epicótilo foram transformados via Agrobacterium tumefaciens, e selecionados em meio de cultura suplementado com canamicina ou gentamicina. A transformação genética foi confirmada por PCR e Southern blot. A transcrição do gene foi avaliada por RT-PCR e a produção da proteína harpina foi analisada por western blot. A eficiência de transformação variou de 2,7 e 6,2% de acordo com a variedade de laranja. Algumas linhagens de plantas transgênicas apresentaram desenvolvimento anormal, não permitindo a realização da análise por Southern blot nem a multiplicação por enxertia. Plantas de laranja ‘Hamlin’ foram propagadas por enxertia e avaliadas para resistência a Xanthomonas axonopodis pv. citri. Todas as linhagens apresentaram redução na severidade dos sintomas causados pela bactéria X. axonopodis pv. citri, avaliados 30 dias após a inoculação. / The citrus industry has a great economic and social importance for Brazil, which is considered largest producer and orange juice exporter in the world. However, serious problems related to pathogens have affected citrus production and quality. With the development of genetic engineering and the characterization of genes related with plant disease resistance, the genetic transformation became an important tool in citrus breeding programs. The objective of this work was the production of transgenic plants of four sweet orange cultivars ‘Hamlin’, ‘Valencia’, ‘Natal’ and ‘Pera’ expressing hrpN gene under the control of Pgst1 inducible promoter. The evaluation of ‘Hamlin’ sweet orange transgenic plants infected with the causal agent of citrus canker, Xanthomonas axonopodis pv. citri was carry out. Epicotyl segments were inoculated with Agrobacterium tumefaciens, and selected in a culture medium supplemented with kanamycin or gentamycin. The genetic transformation was confirmed by PCR and Southern blot analysis. The gene transcription was evaluated by RT-PCR and the production of harpin protein was detected by western blot. The genetic transformation efficiency varied from 2,7% to 6,2% depending on the cultivar. Some transgenic lines had abnormal development, not allowing performing Southern blot analysis or multiplication by grafting. Plants of ‘Hamlin&#146 sweet orange were propagated by grafting and evaluated for Xanthomonas axonopodis pv. citri resistance. All tested plants presented reduction in the severity of the symptoms caused by bacterium X. axonopodis pv. citri 30 days after the inoculation.
159

Análise da via de regulação gênica do miRNA156/SPL na brotação lateral e caracterização molecular do processo de emergência da gema axilar de cana de açucar / Analysis of the role(s) of the miRNA156/SPL pathway on branching/tillering and molecular characterization of sugarcane lateral bud outgrowth

Ortiz-Morea, Fausto Andrés 24 January 2011 (has links)
Atualmente a cultura da cana de açúcar tem ganhado destaque no cenário mundial devido a seu potencial uso na produção de bioenergia o qual poderia ser beneficiado desenvolvendo-se cultivares com aumento da produtividade de biomassa por unidade de área, o que é por sua vez, determinada pela arquitetura da planta. A brotação lateral é um dos principais fatores que regulam a arquitetura dos vegetais. Recentemente, esta fase do desenvolvimento tem sido estudada intensivamente em plantas consideradas modelo, elucidando em parte as vias genéticas, ambientais e hormonais que regulam este processo. Dentro desta vias, microRNAs, uma classe de pequenos RNAs não codantes que modula pós-transcricionalmente a expressão de genes endógenos, parecem ser importantes reguladores. Em cana de açúcar, a brotação lateral é importante para a arquitetura dos ramos laterais, germinação de gemas e perfilhamento. Entretanto, devido a sua complexidade genética e ausência de mutantes defectivos na brotação lateral, estudos nesta área ao nível molecular são limitados. Neste contexto, este trabalho teve por objetivos estudar em cana de açúcar a via microRNA156/fatores de transcrição do tipo SQUAMOSA promoter-binding-protein (SPL), a qual é associada à regulação do perfilhamento, bem como caracterizar molecularmente o processo de emergência de gemas axilares. Ferramentas computacionais usando o banco publico de ESTs TIGR gene índex permitiram identificar e classificar no genoma de cana de açúcar, diferentes genes associados ao processo de brotação lateral e resposta hormonal. Entres estes, seis genes SPL regulados pelo miR156 foram identificados, sendo um deles (SsSPL1) homólogo a SPLs envolvidas diretamente na regulação do perfilhamento. A expressão da SsSPL1 foi monitorada em diferentes tecidos e órgãos, juntamente com o miR156. Os dados sugerem que a SsPL1, é regulada negativamente pelo miR156, sendo esta via também conservada em cana de açúcar. Foram geradas plantas transgênicas da cultivar RB85486 com o gene endógeno SsmiR156a/b o qual codifica um precursor conservado do miR156 e parece estar associado com a evolução da arquitetura em monocotiledôneas. O acúmulo do miR156 foi avaliado em plantas transformadas via RT-qPCR encontrando variabilidade na sua expressão. Bibliotecas de pequenos RNAs foram geradas em gemas dormentes e em desenvolvimento, permitindo identificar membros de 26 famílias de miRNAs. A expressão de quatro deles, de seus genes-alvo e de outros genes selecionados foi monitorada em gemas dormentes e com 2 e 5 dias após o plantio. Interessantemente, o miR159 foi o mais expresso em gemas axilares de cana e parece ser um fator chave na emergência da gema, já que, segundo os resultados obtidos, esse miRNA parece modular a expressão do seu gene alvo SsGAMyB, o qual é um fator de transcrição implicado na ativação de genes de resposta a giberelina. Durante esta fase inicial do desenvolvimento também foi observado alterações na expressão de genes associados com processos de transdução de sinal associados aos fitohormônios auxina e etileno. Os resultados obtidos indicam que a emergência de gemas laterais é um processo dinâmico em que fitohormônios, fatores de transcrição e microRNAs participam conjuntamente para promover o crescimento e 12 desenvolvimento da nova plântula de cana de açúcar. / Sugarcane is an economically important biofuel crop that recently has become a target for improvement of sustainable biomaterial production due to its high biomass productivity and built-in containment features. Therefore, studies aiming to improve the production of biomass per area are among the most important issues in sugarcane production. Plant biomass is defined, at least in part, by its shoot architecture. Although shoot architecture (branching/tillering) is to some extend influenced by environmental factors, it is determined mainly by the plants genetic program. This includes developmental programs that are regulated by a complex network of genetic pathways that integrate endogenous and environmental cues. Several transcription factors as well as microRNAs are likely part of this network. In this study, we started to investigate the roles of the genetic pathway regulated by the microRNA156 and its targets, the transcription factors SQUAMOSA promoter-binding-protein (SPLs) in sugarcane branching/tillering. We identified six members of the SPL family that were further classified into four subfamilies. In both dicots and monocots, these SPLs are key regulators of the plant shoot architecture. We monitored the expression patterns of SsmiR156 e SsSPL1 in distinct sugarcane tissues/organs. Our observations suggest that miR156 regulates posttranscriptionally SsSPL1 mainly in leaf tissues. We generated transgenic sugarcane plants overexpressing the monocot-specific sugarcane miR156 precursor SsMIR156b/c via biolistic method. This precursor is thought to be important for the evolution of grass shoot architecture. Although we observed higher accumulation of mature SsmiR156b/c in leaf tissues of some transgenic plants as compared with tissues from non-transgenic plants, we could not detect any significant changes in their vegetative architecture. Using deep sequencing approaches, we have generated two small RNA libraries from dormant and outgrown sugarcane lateral buds. Preliminary analyses indicate that a select group of small RNAs are expressed in lateral buds, including over 200 repeat-associated small interfering RNAs (rasiRNAs) and 25 conserved microRNAs (miRNAs). Amongst the miRNAs, miR159 was the most sequenced in the two libraries. We evaluated miR159 accumulation pattern in addition to other selected miRNAs via qRT-PCR in dormant and developing buds. The majority of the evaluated miRNAs accumulate differentially during bud development, though with distinct expression patterns. Interestingly, miR159 accumulates at high levels in dormant buds, but scarcely in developing buds. Conversely, the experimentally confirmed miR159 target, a sugarcane GAMyB-like gene (SsGAMyB), is lowly expressed in dormant buds while its transcripts accumulate at higher levels in developing buds. GAMyB-like genes encode R2R3 MYB domain transcription factors that have been implicated in gibberellin (GA) and abscisic acid (ABA) signaling in germinating seeds. Our data suggest miR159 regulates GAMyB-like genes during sugarcane bud outgrowth. Similarly, SsSPL1 is regulated posttranscriptionally by the miR529, though this gene has sites for both miR529 and miR156. Auxin and ethylene-associated regulatory pathways are affected during sugarcane bud development. Taken together,our data indicate that sugarcane bud outgrowth from rhizomes is a complex developmental process involving hormones, transcription factors as well as microRNAs and other regulatory RNAs.
160

Transgenic expression of human granulocyte colony-stimulating factor (hG-CSF) in tobacco and Arabidopsis seeds.

January 2002 (has links)
by Lee Juon Kiu. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2002. / Includes bibliographical references (leaves 139-152). / Abstracts in English and Chinese. / Thesis committee --- p.i / Statement --- p.ii / Acknowledgements --- p.iii / Abstract --- p.v / Table of contents --- p.ix / List of figures --- p.xv / List of tables --- p.xvii / List of graphs --- p.xviii / List of abbreviations --- p.xix / Chapter Chapter 1: --- General Introduction --- p.1 / Chapter Chapter 2: --- Literature Review --- p.4 / Chapter 2.1 --- Human granulocyte colony-stimulating factor (hG-CSF) --- p.4 / Chapter 2.1.1 --- Physiological roles --- p.4 / Chapter 2.1.2 --- Molecular properties --- p.8 / Chapter 2.1.3 --- Biochemical properties --- p.9 / Chapter 2.1.4 --- Comparison to G-CSF of other specie --- p.10 / Chapter 2.1.5 --- Clinical application --- p.11 / Chapter 2.1.6 --- Economic value --- p.13 / Chapter 2.2 --- Expression systems producing recombinant hG-CSF --- p.15 / Chapter 2.2.1 --- Bacteria --- p.15 / Chapter 2.2.2 --- Yeasts --- p.17 / Chapter 2.2.3 --- Animal cell lines --- p.18 / Chapter 2.2.4 --- Transgenic animals --- p.19 / Chapter 2.2.5 --- Transgenic plants --- p.20 / Chapter 2.3 --- Plant as bioreactors --- p.21 / Chapter 2.3.1 --- Characteristics of using plant as bioreactors --- p.22 / Chapter 2.3.2 --- Transgenic plants producing hematopoietic growth factors --- p.24 / Chapter 2.3.2.1 --- Granulocyte-macrophage colony-stimulating factor (GM-CSF) --- p.24 / Chapter 2.3.2.2 --- Erythropoietin (Epo) --- p.26 / Chapter 2.3.3 --- Arabidopsis and tobacco as model plants --- p.27 / Chapter 2.3.3.1 --- Arabidopsis --- p.28 / Chapter 2.3.3.2 --- Tobacco --- p.28 / Chapter 2.3.4 --- Phaseolin and its regulatory sequences --- p.29 / Chapter 2.4 --- Plant transformation methods --- p.31 / Chapter 2.4.1 --- Agrobacterium-mediated transformation --- p.31 / Chapter 2.4.1.1 --- Tissue culture methods --- p.31 / Chapter 2.4.1.2 --- Non-tissue culture (In planta) methods --- p.32 / Chapter 2.4.2 --- Direct DNA uptake transformation --- p.33 / Chapter 2.4.2.1 --- Chemical methods --- p.33 / Chapter 2.4.2.2 --- Electrical methods --- p.34 / Chapter 2.4.2.3 --- Physical methods --- p.34 / Chapter Chapter 3: --- Materials and Methods --- p.36 / Chapter 3.1 --- Introduction --- p.36 / Chapter 3.2 --- Chemicals --- p.37 / Chapter 3.3 --- Bacterial strains --- p.37 / Chapter 3.4 --- Chimeric gene construction --- p.37 / Chapter 3.4.1 --- Cloning of pTZ/Phas/His/EK/hG-CSF --- p.41 / Chapter 3.4.2 --- Cloning of pBK/Phas/SP/His/EK/hG-CSF --- p.44 / Chapter 3.4.3 --- Cloning of pBK/Phas/SP/hG-CSF --- p.47 / Chapter 3.4.4 --- Confirmation of sequence fidelity of chimeric genes --- p.50 / Chapter 3.4.5 --- Cloning of chimeric genes into Agrobacterium binary vector --- p.51 / Chapter 3.5 --- Expression in Arabidopsis --- p.52 / Chapter 3.5.1 --- Agrobacterium GV3101/pMP90 transformation --- p.52 / Chapter 3.5.2 --- Arabidopsis transformation --- p.53 / Chapter 3.5.2.1 --- Plant materials --- p.53 / Chapter 3.5.2.2 --- Vacuum infiltration --- p.54 / Chapter 3.5.3 --- Screening of successful R1 transformants --- p.55 / Chapter 3.5.4 --- Screening of hemizygous and homozygous transgenic Arabidopsis --- p.56 / Chapter 3.5.5 --- GUS assay --- p.57 / Chapter 3.5.6 --- Genomic DNA extraction --- p.57 / Chapter 3.5.7 --- Southern blot analysis --- p.58 / Chapter 3.5.8 --- Total RNA extraction from developing siliques --- p.59 / Chapter 3.5.9 --- Northern blot analysis --- p.60 / Chapter 3.5.10 --- Protein extraction and Tricine SDS-PAGE --- p.61 / Chapter 3.5.11 --- Western blot analysis --- p.62 / Chapter 3.5.12 --- Functional analysis --- p.63 / Chapter 3.5.12.1 --- Culture ofNFS-60 cells --- p.64 / Chapter 3.5.12.2 --- MTT assay --- p.65 / Chapter 3.6 --- Expression in tobacco --- p.67 / Chapter 3.6.1 --- Agrobacterium LBA4404/pAL4404 transformation --- p.67 / Chapter 3.6.2 --- Tobacco transformation --- p.68 / Chapter 3.6.2.1 --- Plant materials --- p.68 / Chapter 3.6.2.2 --- Tobacco transformation using leaf-disc technique --- p.68 / Chapter 3.6.3 --- Regeneration of transgenic tobacco --- p.69 / Chapter 3.6.4 --- GUS assay --- p.70 / Chapter 3.6.5 --- Genomic DNA extraction --- p.70 / Chapter 3.6.6 --- Southern blot analysis --- p.70 / Chapter 3.6.7 --- Total RNA extraction from immature seeds --- p.70 / Chapter 3.6.8 --- Northern blot analysis --- p.71 / Chapter 3.6.9 --- Protein extraction and Tricine SDS-PAGE --- p.71 / Chapter 3.6.10 --- Western blot analysis --- p.71 / Chapter 3.6.11 --- Functional analysis --- p.71 / Chapter 3.6.11.1 --- Culture of NFS-60 cells --- p.72 / Chapter 3.6.11.2 --- MTT assay --- p.72 / Chapter Chapter 4: --- Results --- p.73 / Chapter 4.1 --- Chimeric gene construction --- p.73 / Chapter 4.1.1 --- Cloning of pTZ/Phas/His/EK/hG-CSF --- p.73 / Chapter 4.1.2 --- Cloning of pBK/Phas/SP/His/EK/hG-CSF --- p.75 / Chapter 4.1.3 --- Cloning of pBK/Phas/SP/hG-CSF --- p.77 / Chapter 4.1.4 --- Cloning of chimeric genes into Agrobacterium binary vector --- p.79 / Chapter 4.2 --- Expression in Arabidopsis --- p.81 / Chapter 4.2.1 --- Agrobacterium GV3101/pMP90 transformation --- p.81 / Chapter 4.2.2 --- Arabidopsis transformation and screening of R1 transformants --- p.83 / Chapter 4.2.3 --- Screening of hemizygous transgenic R1 Arabidopsis --- p.84 / Chapter 4.2.4 --- Screening of homozygous transgenic R2 Arabidopsis --- p.86 / Chapter 4.2.5 --- GUS assay --- p.88 / Chapter 4.2.6 --- Genomic DNA extraction --- p.89 / Chapter 4.2.7 --- Southern blot analysis --- p.91 / Chapter 4.2.8 --- Total RNA extraction from developing siliques --- p.93 / Chapter 4.2.9 --- Northern blot analysis --- p.94 / Chapter 4.2.10 --- Protein extraction and Tricine SDS-PAGE --- p.96 / Chapter 4.2.11 --- Western blot analysis --- p.99 / Chapter 4.2.12 --- Functional analysis --- p.103 / Chapter 4.3 --- Expression in tobacco --- p.108 / Chapter 4.3.1 --- Agrobacterium LBA4404/pAL4404 transformation --- p.108 / Chapter 4.3.2 --- Tobacco transformation and regeneration of transformants --- p.109 / Chapter 4.3.3 --- GUS assay --- p.111 / Chapter 4.3.4 --- Genomic DNA extraction --- p.112 / Chapter 4.3.5 --- Southern blot analysis --- p.114 / Chapter 4.3.6 --- Total RNA extraction from immature seeds --- p.116 / Chapter 4.3.7 --- Northern blot analysis --- p.116 / Chapter 4.3.8 --- Protein extraction and Tricine SDS-PAGE --- p.118 / Chapter 4.3.9 --- Western blot analysis --- p.120 / Chapter 4.3.10 --- Functional analysis --- p.123 / Chapter Chapter 5: --- Discussion --- p.126 / Chapter 5.1 --- Introduction --- p.126 / Chapter 5.2 --- Successful in producing biologically active rhG-CSF from transgenic plants --- p.128 / Chapter 5.2.1 --- Production level --- p.129 / Chapter 5.2.2 --- O-glycosylation --- p.130 / Chapter 5.2.3 --- Phaseolin signal peptide --- p.131 / Chapter 5.2.4 --- Functional analysis --- p.131 / Chapter 5.3 --- Comparison of the productivity of other expression systems producing rhG-CSF --- p.132 / Chapter 5.4 --- Comparison of the productivity of plants producing different human proteins --- p.135 / Chapter 5.5 --- Future perspectives --- p.137 / Chapter Chapter 6: --- Conclusion --- p.138 / References --- p.139

Page generated in 0.1317 seconds