• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 356
  • 195
  • 154
  • 52
  • 16
  • 10
  • 7
  • 7
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 911
  • 147
  • 136
  • 130
  • 105
  • 99
  • 91
  • 89
  • 87
  • 84
  • 75
  • 74
  • 69
  • 69
  • 67
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Comparative genomic hybridization (CGH) in genotoxicology

Baumgartner, Adolf January 2013 (has links)
No / In the past two decades comparative genomic hybridization (CGH) and array CGH have become crucial and indispensable tools in clinical diagnostics. Initially developed for the genome-wide screening of chromosomal imbalances in tumor cells, CGH as well as array CGH have also been employed in genotoxicology and most recently in toxicogenomics. The latter methodology allows a multi-endpoint analysis of how genes and proteins react to toxic agents revealing molecular mechanisms of toxicology. This chapter provides a background on the use of CGH and array CGH in the context of genotoxicology as well as a protocol for conventional CGH to understand the basic principles of CGH. Array CGH is still cost intensive and requires suitable analytical algorithms but might become the dominating assay in the future when more companies provide a large variety of different commercial DNA arrays/chips leading to lower costs for array CGH equipment as well as consumables such as DNA chips. As the amount of data generated with microarrays exponentially grows, the demand for powerful adaptive algorithms for analysis, competent databases, as well as a sound regulatory framework will also increase. Nevertheless, chromosomal and array CGH are being demonstrated to be effective tools for investigating copy number changes/variations in the whole genome, DNA expression patterns, as well as loss of heterozygosity after a genotoxic impact. This will lead to new insights into affected genes and the underlying structures of regulatory and signaling pathways in genotoxicology and could conclusively identify yet unknown harmful toxicants.
32

Isolation and characterization of the cDNA for cystic fibrosis antigen

Dorin, Julia Ruth January 1987 (has links)
No description available.
33

Studies of homologous recombination between plasmid and chromosomal DNA

Harwood, Adrian J. January 1988 (has links)
No description available.
34

DNA sequence polymorphisms in Triticeae species

Harcourt, Rebecca Louise January 1992 (has links)
No description available.
35

Ebf2, a new regulator of neuronal differentiation : from gene identification to analysis of the Ebf2 -/- mouse

Corradi, Anna January 2000 (has links)
No description available.
36

Molecular cloning and sequence analysis of Newcastle disease virus

Millar, N. S. January 1987 (has links)
No description available.
37

A further nar gene in Escherichia coli

Walters, D. E. January 1988 (has links)
No description available.
38

Analysis of homeobox-containing genes in Xenopus borealis

Stickland, Julia Elizabeth January 1988 (has links)
No description available.
39

Potential inter-relationships between the dissimilatory pathways of steroids and aromatic compounds in Pseudomonas species

Pritchard, Ian January 1995 (has links)
No description available.
40

Characterisation of the imprinted genes in mouse, Grb10 and Dlk1

Madon, Marta January 2012 (has links)
Genomic imprinting provides an exception to the Mendelian rule of inheritance, as imprinted genes are preferentially expressed in a parent-of-origin specific manner. They play important roles in the development of embryonic and extra-embryonic lineages and postnatally in the maintenance of correct metabolic homeostasis as well as regulation of adult behaviour. The parental conflict theory predicts that maternally expressed genes act as growth suppressors, limiting the usage of maternal resources, and that paternally expressed genes function in an opposite manner to promote growth at the expense of maternal resources. Growth factor bound protein 10 (Grb10) is an imprinted gene encoding an intracellular adaptor protein that can interact with several receptor tyrosine kinases and downstream signalling molecules. Recently, our lab has identified Grb10 as a unique imprinted gene capable of influencing fetal growth, postnatal energy metabolism and adult behaviour depending on functions of each of the parental alleles in distinct tissues. Grb10 predominantly expressed from the maternal allele during embryogenesis affects fetal and placental growth along with postnatal glucose homeostasis, whereas paternal Grb10 expression within the CNS influences social behaviour. Delta-like homologue 1 is (Dlk1) a paternally expressed imprinted gene coding for a protein belonging to the Notch/Delta family that acts as a membrane-associated or a soluble protein known to regulate differentiation of various cell types, notably adipocytes. In vivo Dlk1 has been associated with perinatal survival, regulation of normal growth and development and maintenance of the correct course of adipogenesis. Here a hypothesis is proposed that Grb10, as a predominantly maternally expressed growth inhibitor and Dlk1, a paternally expressed growth promoter, act antagonistically in a common genetic pathway. To test this hypothesis, we have generated Grb10m/+/Dlk1+/p double knockout mice and performed a phenotypic characterisation in comparison with wild type as well as the respective single knockout animals. Results obtained from allometric and metabolic analyses, together with histological studies, reveal strong similarities between the phenotypes of Grb10m/+and Grb10m/+/Dlk1+/p knockout mice. We found that overgrowth of Grb10m/+/Dlk1+/p embryos and placentae resemble the phenotype seen in Grb10m/+ mutants and that tissue overgrowth most likely results from higher proliferation rates of Grb10m/+and Grb10m/+/Dlk1+/p cells. Furthermore, Grb10m/+and Grb10m/+/Dlk1+/p knockout mice each exhibit improved glucose clearance and share an unusual characteristic accumulation of lipid in neonatal liver. These results are consistent with the proposed hypothesis and indicate that the Dlk1 and Grb10 genes might be involved in the same genetic pathway. Moreover, the data suggest Dlk1 is an inhibitor of Grb10 which is in turn acting as a growth suppressor.

Page generated in 0.0372 seconds