Spelling suggestions: "subject:"eometry."" "subject:"ceometry.""
901 |
Abordagem histórico-epistemológica do ensino da geometria fazendo uso da geometria dinâmica / Historical-epistemological approach geometry teaching making use of dynamic geometry.Waldomiro, Tatiana de Camargo 09 June 2011 (has links)
A presente pesquisa, de cunho quantitativo, tem como propósito responder a seguinte questão: De que modo e em que alcance o trabalho pedagógico articulado com a história, geometria e meio computacional tem refletido sobre posturas e caminhos que levassem os alunos a se envolver com o conhecimento matemático? Desse modo, fizemos uma investigação e análise sobre os efeitos de uma articulação entre o ensino da história da matemática e o uso de ferramentas computacionais como solução para as dificuldades apresentadas no Ensino de Geometria, principalmente no Ensino Médio. Utilizamos a obra de Lakatos e a primeira proposição (do livro 1) de Euclides para realizar a verificação de sua demonstração através de um software de Geometria dinâmica. Os resultados serão utilizados para a construção de um novo software que envolva o ensino e aprendizagem de história da matemática e geometria. Outros objetivos podem ser assim colocados: Refletir sobre as condições e viabilidade da integração de recursos computacionais para o ensino da Matemática no âmbito Ensino Médio em especial a partir do produtos/softwares propostos para a educação matemática; Compreender o potencial de softwares de geometria dinâmica para a educação matemática escolar; Analisar as necessidades matemáticas de uma instrumentação eficaz, a partir da história da Matemática, para compreender a Matemática como um 9 processo em construção, em especial no âmbito das relações geométricas. Para isso foram retiradas vivências do cotidiano das aulas de Matemática para a reflexão sobre a geometria, e os resultados foram que a história da Matemática junto as novas tecnologias podem mudar as concepções de conhecimento da Matemática, pois através do professor ela pode chegar à sala de aula e transformar a prática pedagógica. / The current study focused on quantity, aims to answer the following question: How and to what extent the educational work linked to the story, using computational geometry and has reflected on postures and paths that could lead students to engage with the mathematical knowledge? Thus, we developed a research and analysis on the effects of an articulation between the teaching of mathematics and the use of computational tools as a solution to the problems presented in the Teaching of Geometry, especially in high school. We used the work of Lakatos and the first proposition (Book 1) Euclid to perform the verification of his statement through a dynamic geometry software. Results will be used for the construction of a new software that involves teaching and learning of history of mathematics and geometry. Other goals may be well placed: Reflecting on the conditions and feasibility of integrating computing resources - to the teaching of mathematics in high school - in particular from the product / software proposed for mathematics education; understand the potential of software for geometry dynamic for mathematics education; analyze the needs of a mathematical effective instrumentation, from the history of mathematics, to understand mathematics as an ongoing process, particularly in the context of geometric relationships. For that were withdrawn daily experiences of mathematics lessons to reflect on the geometry and the results 11 were that the history of mathematics with the new technologies may change the concepts of knowledge of mathematics, because through it the teacher can get to the room transform the classroom and practice teaching.
|
902 |
On the birational section conjecture over function fieldsTyler, Michael Peter January 2017 (has links)
The birational variant of Grothendieck's section conjecture proposes a characterisation of the rational points of a curve over a finitely generated field over Q in terms of the sections of the absolute Galois group of its function field. While the p-adic version of the birational section conjecture has been proven by Jochen Koenigsmann, and improved upon by Florian Pop, the conjecture in its original form remains very much open. One hopes to deduce the birational section conjecture over number fields from the p-adic version by invoking a local-global principle, but if this is achieved the problem remains to deduce from this that the conjecture holds over all finitely generated fields over Q. This is the problem that we address in this thesis, using an approach which is inspired by a similar result by Mohamed Saïdi concerning the section conjecture for étale fundamental groups. We prove a conditional result which says that, under the condition of finiteness of certain Shafarevich-Tate groups, the birational section conjecture holds over finitely generated fields over Q if it holds over number fields.
|
903 |
Possibilidades na conversão entre registros de geometria planaTerra Neto, Platão Gonçalves January 2016 (has links)
Nesta pesquisa, que consiste de um estudo de caso, elaboramos uma sequência didática que prevê atividades que devem ser resolvidas de duas maneiras distintas. Uma das maneiras utiliza conceitos de Geometria Plana – como Teorema de Pitágoras e semelhanças – e a outra maneira utiliza conceitos de Geometria Analítica – como equações de reta e cálculos de área via determinantes. Para analisar os dados coletados, com a aplicação desta sequência, a Teoria de Registros de Representação Semiótica foi utilizada. Duval (2009), autor da teoria, trata sobre a importância dos registros em Ensino de Matemática, sobre a conversão de um registro em outro e sobre a necessidade de utilização de mais de um registro como um meio de entender o modo matemático de pensar. Como meio de dar um suporte a nossa pesquisa, em nossa revisão bibliográfica, procuramos produções recentes, nas quais foram utilizadas a mesma teoria sob o aspecto da conversão, e analisamos também se os livros didáticos de Matemática, do terceiro ano do Ensino Médio, contemplam atividades que incentivem a utilização de mais de um registro para resolução de atividades. Esta sequência foi aplicada em uma turma de alunos do terceiro ano, de uma escola de Ensino Médio Técnico integrado e sua estrutura foi inspirada na Investigação Matemática de Ponte (2006). Nesta pesquisa, os registros, majoritariamente utilizados pelos alunos, foram os de Geometria Plana – Figural – e de Geometria Analítica – Gráfico – e verificamos que os alunos conseguiram, quando solicitados, articular a utilização destes dois tipos de registro. / In this case study we elaborate a didactic sequence that predicts activities that should be solved in two different ways. One of them uses the concepts of plane geometry – such as the Pythagorean theorem and similarities – and the other uses the concepts of analytic geometry – such as the equations of a line and area calculations. To analyze the data assembled with the application of this sequence we used The Theory of Registers of Semiotic Representation. Duval (2009), the author of this theory, addresses the importance of registers in Mathematics Teaching, the conversion of one register to another, and the need to use more than one register as a way to understand the mathematical way of thinking. To support our research, we looked in our bibliographical review for recent articles that made use of the same theory under the conversion aspect, and we also analyzed whether third year high school mathematics textbooks offer activities that encourage the use of more than one register in the solution of activities. This sequence was applied in a class of third-year students, from an integrated technical high school and its structure was inspired by Ponte’s Mathematical Investigation (2006). In this research, the registers most used by the students were those of plane geometry – figure – and of analytic geometry – graph – and we verified that the students, on request, achieved to articulate the use of these two types of registers.
|
904 |
Do sensível às ideias: Um estudo de geometria a partir de atividades envolvendo espaço e forma / IDEAS TO SENSITIVE: A GEOMETRY STUDY SPACE AND FORM INVOLVING ACTIVITIES FROMLima, André Ferreira de 16 September 2015 (has links)
Submitted by Jean Medeiros (jeanletras@uepb.edu.br) on 2016-04-05T16:13:58Z
No. of bitstreams: 1
PDF - André Ferreira de Lima.pdf: 3565371 bytes, checksum: 0a8efcec0e9cf60bc3a6802450c7ea9b (MD5) / Approved for entry into archive by Secta BC (secta.csu.bc@uepb.edu.br) on 2016-04-12T17:35:38Z (GMT) No. of bitstreams: 1
PDF - André Ferreira de Lima.pdf: 3565371 bytes, checksum: 0a8efcec0e9cf60bc3a6802450c7ea9b (MD5) / Made available in DSpace on 2016-04-12T17:36:11Z (GMT). No. of bitstreams: 1
PDF - André Ferreira de Lima.pdf: 3565371 bytes, checksum: 0a8efcec0e9cf60bc3a6802450c7ea9b (MD5)
Previous issue date: 2015-09-16 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / My interest for, and my first ideas related to, this research area began during my initial teacher
training. Today, I can verify some results from the reflections along this journey. They make us infer
that if geometry is approached since the first years in school, initially through empiric ideas, and later
on through the exploration of concepts of plane geometry, that would be a more coherent way for
school children to develop geometrical concepts. However, the recognition of geometry was relegated
by almost everyone for many years, which has damaged its teaching quality in the schools.
Fortunately, during the last three decades, there is a tendency to recuperate and show the potential of
geometrical knowledge for the development of a human being. In this context, we are searching for
possible explications that lead us to the answer to our guiding questions: What effects are produced by
a series of planned activities that favor the exploration of a concrete/sensitive geometry in order to
approach notions of plane geometry with fifth-graders? To what extent does this classroom
intervention, guided by the recommendations for geometry teaching to fifth-graders, contribute to the
development of concepts of plane geometry based on the exploration of activities that involve the
composition and decomposition of some representations of geometric solids? In order to discuss these
questions, this study aims to investigate the effects produced by a series of planned activities that
favors the exploration of a concrete/sensitive geometry in order to approach notions of plane geometry
with fifth-graders, through situations that involve the composition and decomposition of some
representations of geometric solids. We carried out a qualitative field study with an interpretative and
naturalistic aspect, involving 25 pupils from a fifth-grade-class at a State school in the town of
Monteiro, State of Paraíba, Brazil. The research structure was based on a set of eight activities related
to geography that were denominated along the episodes of the text. These activities were thought in
the light of a geometry that initially favors the concrete, sensitive character as a possibility to develop
some tri-dimensional geometric concepts and, later on, approach elements of plane geometry in a
constant dialogue between plane and spatial geometry. The data was gathered between the months of
February and March of 2015. Various instruments were used in this task, among them the activity
notebooks that were handed out to every work group during every episode, the film recording, the
facial, corporal and gestural expressions along the process of achieving information, and
commentaries said before or after the moments of construction of geometric knowledge. As part of the
results, it can be highlighted that the activities developed in groups favored an interpersonal
communication where the more skillful participants contributed to the learning of those that presented
more difficulties. / O interesse pelo tema dessa pesquisa tem origem na Licenciatura em Matemática do professorpesquisador.
Momento
esse
em
que
surgiram
as
primeiras
ideias.
Hoje,
verificam-se
alguns
resultados
das
reflexões durante essa caminhada. Defende-se que há um caminho mais coerente para que as
crianças possam construir conceitos geométricos, desde que o ensino de geometria seja desenvolvido,
inicialmente em ideias empíricas para em seguida explorar conceitos da geometria plana e que seja
abordado desde os anos iniciais do Ensino Fundamental. Porém, o reconhecimento do ensino de
geometria foi relegado por quase todos durante muitos anos e acabou prejudicando a qualidade dele
nas escolas. Uma das causas desse abandono foi o Movimento de Matemática Moderna (MMM).
Felizmente, nas últimas três décadas, procuram-se resgatar e mostrar a potencialidade do
conhecimento geométrico para a formação do indivíduo. Diante disso, trilhou-se na busca de possíveis
explicações que possibilitassem responder a seguinte questão norteadora: Quais são os efeitos
produzidos por uma série de atividades planejadas que privilegiam a exploração de uma geometria
sensível para, em seguida, abordar noções da geometria plana com alunos do quinto ano do Ensino
Fundamental? Em que medida essa intervenção em sala de aula, guiada pelas recomendações no
tocante ao ensino de geometria para o segundo ciclo do Ensino Fundamental, contribuirá para a
construção de conceitos da geometria plana a partir da exploração de atividades que envolvam a
composição e decomposição de algumas representações de sólidos geométricos? Essa problemática foi
discutida a partir do seguinte propósito: investigar quais são os efeitos produzidos por uma série de
atividades planejadas que privilegiam a exploração de uma geometria sensível para, em seguida,
abordar noções da geometria plana com alunos do quinto ano do Ensino Fundamental através de
situações que envolvam a composição e decomposição de algumas representações de sólidos
geométricos. Realizou-se uma pesquisa qualitativa sob um aspecto interpretativo e naturalístico em
uma escola da Rede Estadual de Ensino da cidade de Monteiro no estado da Paraíba, envolvendo vinte
e cinco alunos de uma turma de quinto ano do Ensino Fundamental. A pesquisa estruturou-se através
de um conjunto de oito atividades relacionadas à geometria que foram denominadas no decorrer do
texto de episódios. Eles foram pensados à luz de uma geometria que privilegie inicialmente o caráter
sensível e empírico como uma possibilidade de se construir alguns conceitos geométricos envolvendo
três dimensões para, em seguida, abordar elementos da geometria plana fazendo um diálogo constante
entre as geometrias plana e espacial. Coletou-se os dados entre os meses de Fevereiro a Maio de 2015.
Utilizou-se diversos instrumentos de coleta, destaca-se os cadernos de atividades entregues às equipes
em cada episódio e as filmagens. Como resultados, evidencia-se que as atividades desenvolvidas em
equipe favoreceram uma comunicação interpessoal em que participantes mais habilidosos
contribuíram com os que apresentaram mais dificuldades, fato investigado pela zona de
desenvolvimento proximal de Vygotsky. Verificamos também que os discentes deixaram de
denominar um sólido geométrico a partir do formato de suas faces à medida que as atividades
transcorreram. Por fim, registra-se grande crescimento nas faces da construção do conhecimento
geométrico.
|
905 |
Conics in the hyperbolic planeNaeve, Trent Phillip 01 January 2007 (has links)
An affine transformation such as T(P)=Q is a locus of an affine conic. Any affine conic can be produced from this incidence construction. The affine type of conic (ellipse, parabola, hyperbola) is determined by the invariants of T, the determinant and trace of its linear part. The purpose of this thesis is to obtain a corresponding classification in the hyperbolic plane of conics defined by this construction.
|
906 |
Minimal surfacesChaparro, Maria Guadalupe 01 January 2007 (has links)
The focus of this project consists of investigating when a ruled surface is a minimal surface. A minimal surface is a surface with zero mean curvature. In this project the basic terminology of differential geometry will be discussed including examples where the terminology will be applied to the different subjects of differential geometry. In addition the focus will be on a classical theorem of minimal surfaces referred to as the Plateau's Problem.
|
907 |
Mordell-Weil theorem and the rank of elliptical curvesKhalfallah, Hazem 01 January 2007 (has links)
The purpose of this thesis is to give a detailed group theoretic proof of the rank formula in a more general setting. By using the proof of Mordell-Weil theorem, a formula for the rank of the elliptical curves in certain cases over algebraic number fields can be obtained and computable.
|
908 |
An Investigation of the Properties of Join GeometryGiegerich, Louis John, Jr. 01 May 1963 (has links)
This paper presents a proof that the classical geometry as stated by Karol Borsuk [1] follows from the join geometry of Walter Prenowitz [2].
The approach taken is to assume the axioms of Prenowitz. Using these as the foundation, the theory of join geometry is then developed to include such ideas as 'convex set', 'linear set', the important concept of 'dimension', and finally the relation of 'betweenness'. The development is in the form of definitions with the important extensions given in the form of theorems.
With a firm foundation of theorems in the join geometry, the axioms of classical geometry are examined, and then they are proved as theorems or modified and proved as theorems.
The basic notation to be used is that of set theory. No distinction is made between the set consisting of a single element and the element itself. Thus the notation for set containment is ⊂, and is used to denote element containment also. The set containing no elements, or the empty set, is denoted by Ø, The set of points belonging to at least one of the sets under consideration is called union, denoted ∪. The set of points belonging to each of the sets under consideration is called the intersection and denoted by ∩. Any other notation used will be defined at the first usage.
|
909 |
Tightening and blending subject to set-theoretic constraintsWilliams, Jason Daniel 17 May 2012 (has links)
Our work applies techniques for blending and tightening solid shapes represented by sets. We require that the output contain one set and exclude a second set, and then we optimize the boundary separating the two sets. Working within that framework, we present mason, tightening, tight hulls, tight blends, and the medial cover, with details for implementation. Mason uses opening and closing techniques from mathematical morphology to smooth small features. By contrast, tightening uses mean curvature flow to minimize the measure of the boundary separating the opening of the interior of the closed input set from the opening of its complement, guaranteeing a mean curvature bound. The tight hull offers a significant generalization of the convex hull subject to volumetric constraints, introducing developable boundary patches connecting the constraints. Tight blends then use opening to replicate some of the behaviors from tightenings by applying tight hulls. The medial cover provides a means for adjusting the topology of a tight hull or tight blend, and it provides an implementation technique for two-dimensional polygonal inputs. Collectively, we offer applications for boundary estimation, three-dimensional solid design, blending, normal field simplification, and polygonal repair. We consequently establish the value of blending and tightening as tools for solid modeling.
|
910 |
Reality and Computation in Schubert CalculusHein, Nickolas Jason 16 December 2013 (has links)
The Mukhin-Tarasov-Varchenko Theorem (previously the Shapiro Conjecture) asserts that a Schubert problem has all solutions distinct and real if the Schubert varieties involved osculate a rational normal curve at real points. When conjectured, it sparked interest in real osculating Schubert calculus, and computations played a large role in developing the surrounding theory. Our purpose is to uncover generalizations of the Mukhin-Tarasov-Varchenko Theorem, proving them when possible. We also improve the state of the art of computationally solving Schubert problems, allowing us to more effectively study ill-understood phenomena in Schubert calculus.
We use supercomputers to methodically solve real osculating instances of Schubert problems. By studying over 300 million instances of over 700 Schubert problems, we amass data significant enough to reveal generalizations of the Mukhin-Tarasov- Varchenko Theorem and compelling enough to support our conjectures. Combining algebraic geometry and combinatorics, we prove some of these conjectures. To improve the efficiency of solving Schubert problems, we reformulate an instance of a Schubert problem as the solution set to a square system of equations in a higher- dimensional space.
During our investigation, we found the number of real solutions to an instance of a symmetrically defined Schubert problem is congruent modulo four to the number of complex solutions. We proved this congruence, giving a generalization of the Mukhin-Tarasov-Varchenko Theorem and a new invariant in enumerative real algebraic geometry. We also discovered a family of Schubert problems whose number of real solutions to a real osculating instance has a lower bound depending only on the number of defining flags with real osculation points.
We conclude that our method of computational investigation is effective for uncovering phenomena in enumerative real algebraic geometry. Furthermore, we point out that our square formulation for instances of Schubert problems may facilitate future experimentation by allowing one to solve instances using certifiable numerical methods in lieu of more computationally complex symbolic methods. Additionally, the methods we use for proving the congruence modulo four and for producing an
|
Page generated in 0.0412 seconds