• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Experimental deformation in sandstone, carbonates and quartz aggregate

Cheung, See Nga Cecilia 12 August 2015 (has links)
<p> The first part of my thesis is mainly focused on the effect of grain size distribution on compaction localization in porous sandstone. To identify the microstructural parameters that influence compaction band formation, I conducted a systematic study of mechanical deformation, failure mode and microstructural evolution in Bleurswiller and Boise sandstones, of similar porosity (&sim;25%) and mineralogy but different sorting. Discrete compaction bands were observed to develop over a wide range of pressure in the Bleurswiller sandstone that has a relatively uniform grain size distribution. In contrast, compaction localization was not observed in the poorly sorted Boise sandstone. My results demonstrate that grain size distribution exerts important influence on compaction band development, in agreement with recently published data from Valley of Fire and Buckskin Gulch, as well as numerical studies. </p><p> The second part aimed to improve current knowledge on inelastic behavior, failure mode and brittle-ductile transition in another sedimentary rock, porous carbonates. A micritic Tavel (porosity of &sim;13%) and an allochemical Indiana (&sim;18%) limestones were deformed under compaction in wet and dry conditions. At lower confining pressures, shear localization occurred in brittle faulting regime. Through transitional regime, the deformation switched to cataclastic flow regime at higher confining pressure. Specifically in the cataclastic regime, the (dry and wet) Tavel and dry Indiana failed by distributed cataclastic flow, while in contrast, wet Indiana failed as compaction localization. My results demonstrate that different failure modes and mechanical behaviors under different deformation regimes and water saturation are fundamental prior to any geophysical application in porous carbonates. </p><p> The third part aimed to focus on investigating compaction on quartz aggregate starting at low (MPa) using X-ray diffraction. We report the diffraction peak evolution of quartz with increasing pressures. Through evaluating the unit cell lattice parameters and the volume of the quartz sample, macroscopic stress and strain were resolved. Moreover, we observed quartz peak broadened asymmetrically at low pressure, such extent is more prominent in axial than in radial direction. Our evaluation on peak [101] (highest intensity among peaks) demonstrated that full width at half maximum can be a good proxy for microscopic stress distribution. We observed deviations in the pressure-volume curves at P = &sim;0.4 GPa and speculated that it was the point of which onset of grain crushing and pore collapse occur in quartz. This is on the same order of which onset of grain crushing (commonly known as P*) is observed in sandstones in the rock mechanics literature. This demonstrated that there is potential in estimating grain crushing and pore collapse pressure with our technique.</p>
2

Two-dimensional full wavefield inversion of wide-aperture marine seismic streamer data

Shipp, Richard Michael January 2000 (has links)
No description available.
3

Deformation associated with faulting within geologic and interseismic timescales

Marshall, Scott T 01 January 2008 (has links)
This dissertation consists of several distinct studies that use numerical modeling to better constrain deformation due to faulting over disparate timescales. Field mapping reveals a segment of the Lake Mead fault system, the Pinto Ridge fault, and a cluster of west-dipping normal faults located near Pinto Ridge. I suggest that this strike-slip segment was kinematically related to the Bitter Spring Valley fault, created the normal fault cluster at Pinto Ridge, and utilized these normal faults as linking structures between fault segments. Modeling results demonstrate that the location and orientations of the normal faults are consistent with having formed in the perturbed stress field around the slipping Pinto Ridge fault. Calculations of mechanical efficiency suggest that a preferred dip of normal faults in the region may reflect a crustal anisotropy at depth, such as a detachment. I present a methodology for simulating interseismic deformation in complex regions. I derive an analytical model of interseismic deformation that is equivalent to the conventional model. Based on this model, I formulate a two-step numerical simulation of geologic and interseismic deformation. I apply this technique to the Los Angeles region and find that model results match well both geologic slip rate estimates and geodetic velocities. Model results suggest that the Puente Hills thrusts are currently slipping at rates that are compatible with geologic estimates and that localized contraction in the San Gabriel basin is dominantly due to deep slip on the Sierra Madre fault. To assess the control of fault geometry and mechanical interactions on fault slip in a natural system, I create models of the Ventura region, California, using both planar and non-planar faults. I find that incorporating geologically-constrained fault surfaces into numerical models results in a better match to available geologic slip rate data than models utilizing planar faults. Because slip rates at most locations along the surface traces of Ventura faults are not likely to represent average values for the entire fault surface, I propose that well-constrained models can be used to predict slip rates at specific locations and determine whether existing slip rate estimates are representative of average fault slip rates.
4

Numerical modeling of fracturing in non-cylindrical folds: Case studies in fracture prediction using structural restoration

Shackleton, John Ryan 01 January 2009 (has links)
This thesis contains several distinct studies aimed at better understanding fracturing in compressional fault-cored folds. At outcrops of growth strata in the Oliana anticline in the Spanish Pyrenees, the relationship of two joint sets may reflect changing mechanical properties (i.e. via diagenesis) during the folding process. Using a Schmidt hammer, I assess the rigidity contrast between the individual units and suggest that late-stage, throughgoing joints formed in strata with conditions similar to those of the present day and that early, bed-contained joints formed when the rigidity contrast between beds was significantly greater than the present day contrast. Modeling algorithms that are used for fracture prediction assume plane strain to construct, model and restore fault-cored folds. Using mechanical models that allow heterogeneous transport in three dimensions, I explore the distribution and magnitude of out-of-plane transport in plunging fault-cored anticlines and provide guidelines of where plane strain should and should not be applied. I show that out-of-plane transport is significant in the simplest non-cylindrical folds, and suggest that complex non-cylindrical structures should not be modeled using plane strain. I mapped five bed-orthogonal fracture sets associated with folding and faulting events at Sant Corneli anticline, a non-cylindrical, fault related anticline in the Spanish Pyrenees. Fold axis perpendicular, calcite healed joint sets associated with similarly oriented normal faulting both pre-date, and are cross cut by calcite healed, N-NW striking joints. Later bed strike oblique joint sets are distinguished by the presence of iron oxide mineralization that probably occurred during Paleocene-Oligocene time. This study directly links fold-related fracturing to fold evolution because fracture sets can be dated relative to the structural evolution of the anticline. I use three-dimensional restorations of Sant Corneli anticline in the Spanish Pyrenees to test the fracture prediction capability of a fully three-dimensional finite element geomechanical restoration algorithm. Reconstruction of the three-dimensional architecture of the syn-tectonic strata provides a template for incrementally unfolding the anticline. Strains predicted by the restorations are compared to the fracture sets that formed over the corresponding time intervals, which are consistent with the observed fracture patterns at Sant Corneli anticline.
5

In-situ subsurface density estimations using a seismic technique

Fourie, Christoffel Johannes Stephanus. January 2008 (has links)
Thesis (Ph.D.(Exploration Geophysics))--University of Pretoria, 2007. / Abstract in English. Includes bibliographical references (leaves 72-76).

Page generated in 0.0569 seconds