• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 10
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 1
  • 1
  • Tagged with
  • 36
  • 36
  • 13
  • 9
  • 9
  • 8
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Propriedades de Jordan em anéis de grupo / Properties of Jordan in group rings

Geraldo, Anderson 04 July 2019 (has links)
GERALDO, A. Propriedades de Jordan em anéis de grupo. 2019. Dissertação (Mestrado) - Insti- tuto de Matemática e Estatística, Universidade de São Paulo, São Paulo, 2019. Neste trabalho estudamos alguns resultados a respeito do conjunto dos elementos que são simétricos sobre uma involução, orientada ou não, de um anel de grupo. Dado um anel de grupo RG, onde R é comutativo e com elemento identidade 1, e uma involução orientada # ; apre- sentamos as condições necessárias e suficientes sobre R e G para que o subconjunto (RG) + = { RG # = } seja anticomutativo, ou equivalentemente, o produto de Jordan seja trivial em (RG) + . Além disso, estudamos um caso de nilpotência de Jordan no anel de grupo RG e no seu subconjunto (RG) + , para o caso onde a involução não possui orientação. / In this work we study some results regarding the set of elements that are symmetrical about an involution, oriented or not, in a group ring. Given a group ring RG, where R is commutative and with identity element 1, and an oriented involution # we present the necessary and sufficient conditions on R and G so that the set (RG) + = { RG # = } is anticomutative, or equivalently, the Jordan product is trivial in (RG) + . In addition we study a case of Jordans nilpotency in the group RG and its subset (RG) + , for the case where involution has no orientation.
22

Construções de reticulados via extensões cíclicas de grau ímpar

Oliveira, Everton Luiz de [UNESP] 28 February 2011 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:22:18Z (GMT). No. of bitstreams: 0 Previous issue date: 2011-02-28Bitstream added on 2014-06-13T18:08:00Z : No. of bitstreams: 1 oliveira_el_me_sjrp.pdf: 531004 bytes, checksum: 26290057a6f49446476e6e8192925843 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Neste trabalho, descrevemos cíclicas de reticulados algébricos Zn-rotacionados de dimensão ímpar. Essas construções são obtidas através da imersão Rn, via homomorfismo canônico, de determinados Z-módulos livres de posto finito contidos em subcorpos de extensões ciclotômicas do tipo Q(ζp), Q(ζp2), Q(ζpq)e Q(ζpq2), com p e q primos ímpares. Caracterizamos os reticulados e apresentamos propriedades e aplicações na Teoria da Informação. / In this work we describe cyclic constructions of odd dimension. These constructions are obtained by immersion in Rn via the canonical homomorphism, of certain Z-free modules of finite rank contained in subfield cyclotomic extensions of type Q(ζp), Q(ζp2), Q(ζpq)e Q(ζpq2), com p e q odd prime. Featuring the obtained lattices and presenting properties and applications in Information Theory.
23

Finding Torsion-free Groups Which Do Not Have the Unique Product Property

Soelberg, Lindsay Jennae 01 July 2018 (has links)
This thesis discusses the Kaplansky zero divisor conjecture. The conjecture states that a group ring of a torsion-free group over a field has no nonzero zero divisors. There are situations for which this conjecture is known to hold, such as linearly orderable groups, unique product groups, solvable groups, and elementary amenable groups. This paper considers the possibility that the conjecture is false and there is some counterexample in existence. The approach to searching for such a counterexample discussed here is to first find a torsion-free group that has subsets A and B such that AB has no unique product. We do this by exhaustively searching for the subsets A and B with fixed small sizes. When |A| = 1 or 2 and |B| is arbitrary we know that AB contains a unique product, but when |A| is larger, not much was previously known. After an example is found we then verify that the sets are contained in a torsion-free group and further investigate whether the group ring yields a nonzero zero divisor. Together with Dr. Pace P. Nielsen, assistant math professor of Brigham Young University, we created code that was implemented in Magma, a computational algebra system, for the purpose of considering each size of A and B and running through each case. Along the way we check for the possibility of torsion elements and for other conditions that lead to contradictions, such as a decrease in the size of A or B. Our results are the following: If A and B are sets of the sizes below contained in a torsion-free group, then they must contain a unique product. |A| = 3 and |B| ≤ 16; |A| = 4 and |B| ≤ 12; |A| = 5 and |B| ≤ 9; |A| = 6 and |B| ≤ 7. We have continued to run cases of larger size and hope to increase the size of B for each size of A. Additionally, we found a torsion-free group containing sets A and B, both of size 8, where AB has no unique product. Though this group does not yield a counterexample for the Kaplansky zero divisor conjecture, it is the smallest explicit example of a non-uniqueproduct group in terms of the size of A and B.
24

Injectivity, Continuity, and CS Conditions on Group Rings

Alahmadi, Adel Naif M. 20 December 2006 (has links)
No description available.
25

A importância das unidades centrais em anéis de grupo / The importance of central units in group rings

Souza Filho, Antonio Calixto de 14 December 2000 (has links)
Na presente dissertação, discutimos o Problema do Isomorfismo em anéis de grupo para grupos infinitos da forma G × C, apresentado no artigo de Mazur [14], que enuncia um teorema mostrando a equivalência para o Problema do Isomorfismo entre essa classe de grupos infinitos e grupos finitos que satisfaçam a Conjectura do Normalizador. Nossa ênfase concentra-se na relação entre a Conjectura do Isomorfismo e a Conjectura do Normalizador, primeiramente, observada nesse artigo. Em seguida, consideramos um teorema de estrutura para as unidades centrais em anéis de grupo comunicado, pela primeira vez, no artigo de Jespers-Parmenter-Sehgal [9], e generalizado por Polcino Milies-Sehgal em [17], e Jespers-Juriaans em [7]. Evidenciamos a importância desse teorema para a Teoria de Anéis de Grupo e apresentamos uma nova demonstração para o teorema de equivalência de Mazur, considerando, para tanto, uma apropriada unidade central e sua estrutura, caracterizada pelo teorema comunicado para as unidades centrais. Concluímos a dissertação, descrevendo a construção do grupo das unidades centrais para o anel de grupo ZA5 , um grupo livre finitamente gerado de posto 1, utilizando a construção dada no artigo de Aleev [1]. / In this dissertation, we discuss the Problem of the Isomorphism in group rings for infinite groups as G × C. This is presented in [14]. Such article states a theorem which shows an equivalence to the isomorphism problem between that infinite class group and finite groups verifying the Normalizer Conjecture. Our main purpose is the Normalizer Conjecture and the Isomorphism Conjecture relationship remarked in the cited article to the groups above. Following, we consider a group ring theorem to the central units subgroup firstly communicated in [9] and generalized in [17] and [7]. We point up the importance of such theorem to the Group Ring Theory and we give a short and a new demonstration to Mazurs equivalence theorem from using a suitable central unit altogether with its structure lightly by the Central Unit Theorem on focus. We conclude this work sketching the ZA5 central units subgroup on showing it is a free finitely generated group of rank 1 from the presenting construction in Aleevs article [1].
26

Idempotentes centrais primitivos em algumas álgebras de grupos / Primitive central idempotents in some group algebras

Garcia, Vitor Araujo 25 September 2015 (has links)
O objetivo do trabalho é apresentar alguns resultados acerca de anéis de grupos e aplicações, segundo o que foi estudado em livros e artigos sobre o assunto. Inicialmente, apresentaremos alguns fatos básicos sobre anéis de grupos, que podem ser encontrados em [5], e em seguida, apresentaremos os resultados principais, mais recentes, que foram estudados em dois artigos diferentes. No primeiro artigo [4], apresentou-se uma forma de calcular o número de componentes simples de certas álgebras de grupos abelianos finitos, bem como também foi apresentada uma forma de calcular geradores idempotentes de códigos abelianos minimais, suas dimensões e seus pesos. No segundo artigo [2], encontra-se uma descrição feita dos idempotentes centrais primitivos da álgebra de grupo racional de grupos nilpotentes finitos. / Our goal in this project is to present some results about group rings and its applications, as presented in books and articles about this subject. First of all we are going to establish some basic fact about group rings, which can be found mainly in [5], and then we will present the main results, which are more recent, and have been studied in two different articles. In [4], the authors presented a way of evaluating the number of simple components of some finite group algebras, as well presented a way of evaluating idempotent generators of some minimal abelian codes, their dimension and their weights. In [2] there is a complete description of all the primitive central idempotents of the rational group algebra of finite nilpotent groups.
27

Idempotentes centrais primitivos em algumas álgebras de grupos / Primitive central idempotents in some group algebras

Vitor Araujo Garcia 25 September 2015 (has links)
O objetivo do trabalho é apresentar alguns resultados acerca de anéis de grupos e aplicações, segundo o que foi estudado em livros e artigos sobre o assunto. Inicialmente, apresentaremos alguns fatos básicos sobre anéis de grupos, que podem ser encontrados em [5], e em seguida, apresentaremos os resultados principais, mais recentes, que foram estudados em dois artigos diferentes. No primeiro artigo [4], apresentou-se uma forma de calcular o número de componentes simples de certas álgebras de grupos abelianos finitos, bem como também foi apresentada uma forma de calcular geradores idempotentes de códigos abelianos minimais, suas dimensões e seus pesos. No segundo artigo [2], encontra-se uma descrição feita dos idempotentes centrais primitivos da álgebra de grupo racional de grupos nilpotentes finitos. / Our goal in this project is to present some results about group rings and its applications, as presented in books and articles about this subject. First of all we are going to establish some basic fact about group rings, which can be found mainly in [5], and then we will present the main results, which are more recent, and have been studied in two different articles. In [4], the authors presented a way of evaluating the number of simple components of some finite group algebras, as well presented a way of evaluating idempotent generators of some minimal abelian codes, their dimension and their weights. In [2] there is a complete description of all the primitive central idempotents of the rational group algebra of finite nilpotent groups.
28

Códigos cíclicos sobre anéis de cadeia / Cyclic codes over chain rings

Silva, Anderson Tiago da 05 March 2012 (has links)
Neste trabalho, usamos uma abordagem de anéis de grupo para caracterizar códigos cíclicos sobre anéis de cadeia, seus duais e algumas condições sobre códigos auto-duais. Caracterizamos também os códigos cíclicos livres sobre anéis de cadeia e por fim exibimos uma fórmula para o peso de qualquer código cíclico sobre anéis de cadeia de comprimento e p^n 2p^n. / In this thesis, we use an approach of group rings to characterize cyclic codes over chain rings, their duals and some conditions on self-dual codes. It also features free cyclic codes over chain rings and finally we show a formula for the weight of any cyclic code over chain rings of length p^n and 2p^n.
29

Uniquely Solvable Puzzles and Fast Matrix Multiplication

Mebane, Palmer 31 May 2012 (has links)
In 2003 Cohn and Umans introduced a new group-theoretic framework for doing fast matrix multiplications, with several conjectures that would imply the matrix multiplication exponent $\omega$ is 2. Their methods have been used to match one of the fastest known algorithms by Coppersmith and Winograd, which runs in $O(n^{2.376})$ time and implies that $\omega \leq 2.376$. This thesis discusses the framework that Cohn and Umans came up with and presents some new results in constructing combinatorial objects called uniquely solvable puzzles that were introduced in a 2005 follow-up paper, and which play a crucial role in one of the $\omega = 2$ conjectures.
30

AnÃis de grupos inteiros de grupos de Frobenius / Integral group rings of Frobenius groups

Nefran Sousa Cardoso 28 February 2002 (has links)
Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico / Esta dissertaÃÃo està dividida em dois capÃtulos. O primeiro capÃtulo apresenta os AnÃis de Grupos, os Grupos de Frobenius e suas respectivas propriedades. No inÃcio do segundo capÃtulo sÃo apresentadas as Conjecturas de Zassenhaus. A versÃo mais fraca dessas conjecturas à demonstrada para Grupos de Amitsur. No final do segundo capÃtulo, a validade dessa mesma versÃo à provada para Grupos de Frobenius.Tais Grupos de Frobenius sÃo aqueles cujo complemento verifica-se a validade dessa conjectura. Na parte final sÃo apresentados os subgrupos de Hall e o Teorema de Schur-Zassenhaus. / This dissertation is divided into two chapters. The first chapter introduces the Group Rings, the Frobenius Groups and their properties. In the beginning of the second chapter are presented Conjectures of Zassenhaus . The weaker version of these conjectures is demonstrated for Amitsur Groups. At the end of the second chapter, the validity of that version is proven to Frobenius Groups. Such Frobenius Groups are those whose complement, checks the validity of this conjecture. In the final part we present the Hall subgroups and Schur-Zassenhaus Theorem.

Page generated in 0.0871 seconds