• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 7
  • 5
  • 3
  • 1
  • Tagged with
  • 49
  • 49
  • 14
  • 12
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Associações entre a evolução molecular dos genes Hox e a evolução da diversidade morfológica em Squamata e Marsupialia / Associations between Hox genes molecular evolution and the evolution of morphological diversity in Squamata and Marsupialia

Milograna, Sarah Ribeiro 02 December 2015 (has links)
Os genes Hox padronizam o corpo dos vertebrados durante o desenvolvimento embrionário, e a compreensão de sua evolução pode elucidar mecanismos genéticos subjacentes à evolução morfológica. A evolução molecular dos genes Hox imprime assinaturas em regiões regulatórias, as quais potencialmente afetam sua expressão gênica, como os elementos cis-regulatórios (CREs) que ladeiam o cluster D de Hox e seus RNAs não-codificantes (ncRNAs). Essa Tese de Doutorado enfoca a evolução regulatória de genes HoxD envolvidos no estabelecimento dos eixos corpóreos axial ântero-posterior (AP) e apendiculares em linhagens de aminiotas que exibem características morfológicas homoplásticas peculiares: os squamatas serpentiformes (Capítulos I e II) e os marsupiais Diprotodontia (Capítulo III). No Capítulo I investigou-se, em serpentes e anfisbênias, se assinaturas regulatórias envolvidas no estabelecimento das morfologias serpentiformes foram impressas na Sequência Conservada B (Conserved Sequence B, CsB), um CRE centromérico de Hoxd10-13. Usando lagartos e outros tetrápodes como referência para a morfologia serpentiforme, regiões conservadas de CsB foram sequenciadas em 38 espécies de Squamata, cujos TFBS foram preditos e comparados. Ambas linhagens serpentiformes exibem assinaturas regulatórias divergentes e convergentes ausentes em lagartos; a convergência localizou-se em um segmento de CsB que concentra perda nas linhagens serpentiformes de diversos TFBS com funções no desenvolvimento de membros e a aquisição de um sítio de ligação para PBX1. Essa assinatura convergente impressa durante evoluções independentes da morfologia serpentiforme pode estar relacionada à elongação corpórea e à perda dos membros, evidenciando um papel do CsB no desenvolvimento do eixo AP. No Capítulo II, foi investigado se um CRE telomérico (CNS65) e um centromérico (Island I) de Hoxd, os quais regulam respectivamente regiões proximais e distais dos membros tetrápodes em desenvolvimento, retêm suas capacidades regulatórias em Serpentes. Expressões de gene repórter desses CREs de serpentes foram realizadas em camundongo transgênico, revelando deficiência de suas atividades regulatórias nos brotos de membro. A comparação dos TFBS preditos nesses elementos entre serpentes e outros tetrápodes revelou que TFBS relacionados ao desenvolvimento dos membros foram perdidos nas sequências das serpentes. Ainda, essa comparação indicou um elemento em CNS65 potencialmente envolvido especificamente na regulação da formação de estilopódio/zeugopódio, e três elementos na Island I exclusivamente reguladores do desenvolvimento autopodial. A perda de membros em x serpentes aparentemente imprimiu assinaturas nesses CREs de Hoxd que possivelmente contribuíram para sua degeneração funcional, putativamente indicando módulos específicos de regulação nos membros. No Capítulo III, ncRNAs do cluster D de Hox foram estudados no contexto da evolução morfológica do autopódio posterior e heterocronia entre o desenvolvimento de membros anteriores e posteriores em Macropus eugenii. Os ncRNAs mapeados sobre o cluster D de Hox foram selecionados a partir de transcritoma de membros de embriões de M. eugenii nos dias 23 (d23) e 25 (d25) de gravidez, e sua conservação, perfis transcricionais e padrões de expressão foram explorados. A comparação com sequências ortólogas de outros mamíferos revelou cinco ncRNAs conservados em mamíferos, e três aparentemente exclusivos dos marsupiais. Os perfis transcricionais de genes HOXD10-13 e dos ncRNAs do cluster D de Hox foram predominantemente equivalentes. Os padrões de expressão de XLOC46 foi similar aos dos genes HOXD terminais de camundongo e M. eugenii, enquanto que XLOC52 e XLOC53 apresentaram expressão idêntica à desses genes em M. eugenii, exceto pela baixa expressão de XLOC53 no d25. Os ncRNAs intergênicos/intrônicos aos genes HOXD9-12 possivelmente regulam a expressão de genes HOXD terminais em mamíferos, enquanto que XLOC52 e XLOC53 constituem bons candidatos para investigação relacionada à evolução dos membros de marsupiais. Esta Tese demonstra como estudos de assinaturas regulatórias na evolução de genes do desenvolvimento contribuem para o entendimento das histórias evolutivas de divergência entre linhagens e d / Hox genes pattern the vertebrate body during embryonic development, and understanding their evolution may unravel genetic mechanisms subjacent to morphological evolution. Molecular evolution of Hox genes entails signatures in regulatory regions that potentially affect gene expression, such as the cis-regulatory elements (CREs) that surround the HoxD cluster and its noncoding RNAs (ncRNAs). In this PhD Thesis, I have explored regulatory evolution of HoxD genes engaged in the development of appendicular and anterior-posterior body (AP) axes in amniotic lineages that exhibit homoplastic morphological peculiarities: snakelike squamates (Chapters I and II) and diprotodontid marsupials (Chapter III). In Chapter I, I investigated in snakes and amphisbaenians, whether equivalent regulatory signatures were registered in the Conserved Sequence B (CsB), a centromeric Hoxd10-13 CRE, during evolution of snakelike morphologies. Using lizards and other tetrapods to represent the lacertiform morphology, conserved regions within CsB were sequenced from 38 squamate species, and transcription factor binding sites (TFBS) were predicted and compared among groups. Both snakelike lineages carry divergent and convergent regulatory signatures not identified in lizards; the convergence located in one CsB segment comprised loss of limb-related TFBS and gain of a binding site for PBX1. This convergent regulatory signature registered along two independent processes of snakelike evolution may relate to body elongation and limb loss, and evidences a role of CsB for AP axis development. In Chapter II, I investigated whether a telomeric (CNS65) and a centromeric (Island I) Hoxd enhancer that regulate gene expression respectively at proximal and distal regions of developing limbs retain their regulatory capacities in Serpentes. Gene reporter expression of these CREs from snakes were performed in transgenic mice and revealed that their regulatory activities were abrogated in limb buds. Comparison of predicted TFBS in these elements between snakes and limbed tetrapods revealed limb-related TFBS apparently lost in snakes, and pointed to one potential stilopodium/zeugopodium-specific element in CNS65 and three likely autopodium-specific elements in Island I. Limb loss in snakes registered signatures in Hoxd CREs that possibly contributed for their functional impairment, putatively indicating limb-specific modules. Finally, in the chapter III, I studied ncRNAs from HoxD cluster in the context of hindlimb morphological evolution and heterochrony between fore and hindlimb development in the tammar wallaby Macropus eugenii. The ncRNAs mapped to HoxD cluster were selected from transcriptome performed using tammar embryo limbs at days 23 (d23) and 25 (d25) of viii pregnancy, and their conservation, transcriptional profiles and expression patterns were explored. Comparison with orthologous sequences in other mammals revealed five ncRNAs conserved among mammals, and three transcripts apparently exclusive to marsupials. Transcriptional profiles of HOXD10-13 and HoxD ncRNAs were mostly equivalent. XLOC46 expression patterns resembled those of mouse and tammar terminal HOXD genes, whereas XLOC52 and XLOC53 showed identical expression patterns to those genes of tammar, except for XLOC53 low expression at d25. The ncRNAs intergenic/intronic to HOXD9-12 may regulate expression of terminal HOXD genes in mammals, and XLOC52 and XLOC53 are suitable for investigation regarding limb evolution in marsupial. This PhD Thesis demonstrates how studies of evolutionary footprints in regulatory elements of developmental genes contribute for elucidating specific processes during lineages divergence as well as functional aspects of these genes during development.
32

Role of the homeodomain transcription factor Hoxa13 in embryonic development and formation of extra-embryonic structures

Scotti, Martina 12 1900 (has links)
La famille des gènes Hox code pour des facteurs de transcription connus pour leur contribution essentielle à l’élaboration de l’architecture du corps et ce, au sein de tout le règne animal. Au cours de l’évolution chez les vertébrés, les gènes Hox ont été redéfinis pour générer toute une variété de nouveaux tissus/organes. Souvent, cette diversification s’est effectuée via des changements quant au contrôle transcriptionnel des gènes Hox. Chez les mammifères, la fonction de Hoxa13 n’est pas restreinte qu’à l’embryon même, mais s’avère également essentielle pour le développement de la vascularisation fœtale au sein du labyrinthe placentaire, suggérant ainsi que sa fonction au sein de cette structure aurait accompagné l’émergence des espèces placentaires. Au chapitre 2, nous mettons en lumière le recrutement de deux autres gènes Hoxa, soient Hoxa10 et Hoxa11, au compartiment extra-embryonnaire. Nous démontrons que l’expression de Hoxa10, Hoxa11 et Hoxa13 est requise au sein de l’allantoïde, précurseur du cordon ombilical et du système vasculaire fœtal au sein du labyrinthe placentaire. De façon intéressante, nous avons découvert que l’expression des gènes Hoxa10-13 dans l’allantoïde n’est pas restreinte qu’aux mammifères placentaires, mais est également présente chez un vertébré non-placentaire, indiquant que le recrutement des ces gènes dans l’allantoïde précède fort probablement l’émergence des espèces placentaires. Nous avons généré des réarrangements génétiques et utilisé des essais transgéniques pour étudier les mécanismes régulant l’expression des gènes Hoxa dans l’allantoïde. Nous avons identifié un fragment intergénique de 50 kb capable d’induire l’expression d’un gène rapporteur dans l’allantoïde. Cependant, nous avons trouvé que le mécanisme de régulation contrôlant l’expression du gène Hoxa au sein du compartiment extra-embryonnaire est fort complexe et repose sur plus qu’un seul élément cis-régulateur. Au chapitre 3, nous avons utilisé la cartographie génétique du destin cellulaire pour évaluer la contribution globale des cellules exprimant Hoxa13 aux différentes structures embryonnaires. Plus particulièrement, nous avons examiné plus en détail l’analyse de la cartographie du destin cellulaire de Hoxa13 dans les pattes antérieures en développement. Nous avons pu déterminer que, dans le squelette du membre, tous les éléments squelettiques de l’autopode (main), à l’exception de quelques cellules dans les éléments carpiens les plus proximaux, proviennent des cellules exprimant Hoxa13. En contraste, nous avons découvert que, au sein du compartiment musculaire, les cellules exprimant Hoxa13 et leurs descendantes (Hoxa13lin+) s’étendent à des domaines plus proximaux du membre, où ils contribuent à générer la plupart des masses musculaires de l’avant-bras et, en partie, du triceps. De façon intéressante, nous avons découvert que les cellules exprimant Hoxa13 et leurs descendantes ne sont pas distribuées uniformément parmi les différents muscles. Au sein d’une même masse musculaire, les fibres avec une contribution Hoxa13lin+ différente peuvent être identifiées et les fibres avec une contribution semblable sont souvent regroupées ensemble. Ce résultat évoque la possibilité que Hoxa13 soit impliqué dans la mise en place de caractéristiques spécifiques des groupes musculaires, ou la mise en place de connections nerf-muscle. Prises dans leur ensemble, les données ici présentées permettent de mieux comprendre le rôle de Hoxa13 au sein des compartiments embryonnaires et extra-embryonnaires. Par ailleurs, nos résultats seront d’une importance primordiale pour soutenir les futures études visant à expliquer les mécanismes transcriptionnels soutenant la régulation des gènes Hoxa dans les tissus extra-embryonnaires. / The Hox family of transcription factors is well known for its key contribution in the establishment of the body architecture in all the animal kingdom. During vertebrate evolution, Hox genes have been co-opted to pattern a variety of novel tissues/organs. Often, this diversification has been achieved by changes in Hox transcriptional control. In mammals, Hoxa13 function is not restricted to the embryo proper, but is also essential for the proper development of the fetal vasculature within the placental labyrinth, suggesting that its function in this structure accompanied the emergence of placental species. In chapter 2, we report on the recruitment of two other Hoxa genes, namely Hoxa10 and Hoxa11, in the extra embryonic compartment. We show that Hoxa10, Hoxa11 and Hoxa13 expression is required in the allantois, the precursor of the umbilical cord and fetal vasculature within the placental labyrinth. Interestingly, we found that Hoxa10-13 gene expression in the allantois is not restricted to placental mammals, but is also present in a non-placental vertebrate, indicating that the recruitment of these genes in the allantois most likely predates the emergence of placental species. We generated genetic rearrangements and used transgenic assays to investigate the regulatory mechanisms underlying Hoxa gene expression in the allantois. We identified a 50 kb intergenic fragment able to drive reporter gene expression in the allantois. However, we found that the regulatory mechanism controlling Hoxa gene expression in the extra-embryonic compartment is very complex and relies on more than one cis-regulatory element. In chapter 3, we used genetic fate mapping to assess the overall contribution of Hoxa13 expressing cells to the different embryonic structures. In particular, we focused on Hoxa13 fate-mapping analysis in the developing forelimbs. We could determine that, in the limb skeleton, all autopod (hand) skeletal elements, with the exception of a few cells in the most proximal carpal elements, originate from Hoxa13 expressing cells. In contrast, we found that, in the muscle compartment, Hoxa13 expressing cells and their descendants extend to more proximal limb domains, where they contribute to most of the muscle masses of the forearm and, in part, to the triceps. Interestingly we found that Hoxa13 expressing cells and their descendants are not identically distributed among different muscles. Within the same muscular mass, fibres with different Hoxa13lin+ contribution can be identified, and fibers with similar contribution are often clustered together. This result raises the possibility that Hoxa13 might be involved in establishing specific features of muscle groups, or in establishing nerve-muscle connectivity. Altogether, the data presented herein provide a better understanding of the role of Hoxa13 in both the embryonic and extra-embryonic compartment. Moreover, our results will be of key importance for further investigations aimed at unravelling transcriptional mechanisms underlying Hoxa gene regulation in extra embryonic tissues.
33

Role of the homeodomain transcription factor Hoxa13 in embryonic development and formation of extra-embryonic structures

Scotti, Martina 12 1900 (has links)
La famille des gènes Hox code pour des facteurs de transcription connus pour leur contribution essentielle à l’élaboration de l’architecture du corps et ce, au sein de tout le règne animal. Au cours de l’évolution chez les vertébrés, les gènes Hox ont été redéfinis pour générer toute une variété de nouveaux tissus/organes. Souvent, cette diversification s’est effectuée via des changements quant au contrôle transcriptionnel des gènes Hox. Chez les mammifères, la fonction de Hoxa13 n’est pas restreinte qu’à l’embryon même, mais s’avère également essentielle pour le développement de la vascularisation fœtale au sein du labyrinthe placentaire, suggérant ainsi que sa fonction au sein de cette structure aurait accompagné l’émergence des espèces placentaires. Au chapitre 2, nous mettons en lumière le recrutement de deux autres gènes Hoxa, soient Hoxa10 et Hoxa11, au compartiment extra-embryonnaire. Nous démontrons que l’expression de Hoxa10, Hoxa11 et Hoxa13 est requise au sein de l’allantoïde, précurseur du cordon ombilical et du système vasculaire fœtal au sein du labyrinthe placentaire. De façon intéressante, nous avons découvert que l’expression des gènes Hoxa10-13 dans l’allantoïde n’est pas restreinte qu’aux mammifères placentaires, mais est également présente chez un vertébré non-placentaire, indiquant que le recrutement des ces gènes dans l’allantoïde précède fort probablement l’émergence des espèces placentaires. Nous avons généré des réarrangements génétiques et utilisé des essais transgéniques pour étudier les mécanismes régulant l’expression des gènes Hoxa dans l’allantoïde. Nous avons identifié un fragment intergénique de 50 kb capable d’induire l’expression d’un gène rapporteur dans l’allantoïde. Cependant, nous avons trouvé que le mécanisme de régulation contrôlant l’expression du gène Hoxa au sein du compartiment extra-embryonnaire est fort complexe et repose sur plus qu’un seul élément cis-régulateur. Au chapitre 3, nous avons utilisé la cartographie génétique du destin cellulaire pour évaluer la contribution globale des cellules exprimant Hoxa13 aux différentes structures embryonnaires. Plus particulièrement, nous avons examiné plus en détail l’analyse de la cartographie du destin cellulaire de Hoxa13 dans les pattes antérieures en développement. Nous avons pu déterminer que, dans le squelette du membre, tous les éléments squelettiques de l’autopode (main), à l’exception de quelques cellules dans les éléments carpiens les plus proximaux, proviennent des cellules exprimant Hoxa13. En contraste, nous avons découvert que, au sein du compartiment musculaire, les cellules exprimant Hoxa13 et leurs descendantes (Hoxa13lin+) s’étendent à des domaines plus proximaux du membre, où ils contribuent à générer la plupart des masses musculaires de l’avant-bras et, en partie, du triceps. De façon intéressante, nous avons découvert que les cellules exprimant Hoxa13 et leurs descendantes ne sont pas distribuées uniformément parmi les différents muscles. Au sein d’une même masse musculaire, les fibres avec une contribution Hoxa13lin+ différente peuvent être identifiées et les fibres avec une contribution semblable sont souvent regroupées ensemble. Ce résultat évoque la possibilité que Hoxa13 soit impliqué dans la mise en place de caractéristiques spécifiques des groupes musculaires, ou la mise en place de connections nerf-muscle. Prises dans leur ensemble, les données ici présentées permettent de mieux comprendre le rôle de Hoxa13 au sein des compartiments embryonnaires et extra-embryonnaires. Par ailleurs, nos résultats seront d’une importance primordiale pour soutenir les futures études visant à expliquer les mécanismes transcriptionnels soutenant la régulation des gènes Hoxa dans les tissus extra-embryonnaires. / The Hox family of transcription factors is well known for its key contribution in the establishment of the body architecture in all the animal kingdom. During vertebrate evolution, Hox genes have been co-opted to pattern a variety of novel tissues/organs. Often, this diversification has been achieved by changes in Hox transcriptional control. In mammals, Hoxa13 function is not restricted to the embryo proper, but is also essential for the proper development of the fetal vasculature within the placental labyrinth, suggesting that its function in this structure accompanied the emergence of placental species. In chapter 2, we report on the recruitment of two other Hoxa genes, namely Hoxa10 and Hoxa11, in the extra embryonic compartment. We show that Hoxa10, Hoxa11 and Hoxa13 expression is required in the allantois, the precursor of the umbilical cord and fetal vasculature within the placental labyrinth. Interestingly, we found that Hoxa10-13 gene expression in the allantois is not restricted to placental mammals, but is also present in a non-placental vertebrate, indicating that the recruitment of these genes in the allantois most likely predates the emergence of placental species. We generated genetic rearrangements and used transgenic assays to investigate the regulatory mechanisms underlying Hoxa gene expression in the allantois. We identified a 50 kb intergenic fragment able to drive reporter gene expression in the allantois. However, we found that the regulatory mechanism controlling Hoxa gene expression in the extra-embryonic compartment is very complex and relies on more than one cis-regulatory element. In chapter 3, we used genetic fate mapping to assess the overall contribution of Hoxa13 expressing cells to the different embryonic structures. In particular, we focused on Hoxa13 fate-mapping analysis in the developing forelimbs. We could determine that, in the limb skeleton, all autopod (hand) skeletal elements, with the exception of a few cells in the most proximal carpal elements, originate from Hoxa13 expressing cells. In contrast, we found that, in the muscle compartment, Hoxa13 expressing cells and their descendants extend to more proximal limb domains, where they contribute to most of the muscle masses of the forearm and, in part, to the triceps. Interestingly we found that Hoxa13 expressing cells and their descendants are not identically distributed among different muscles. Within the same muscular mass, fibres with different Hoxa13lin+ contribution can be identified, and fibers with similar contribution are often clustered together. This result raises the possibility that Hoxa13 might be involved in establishing specific features of muscle groups, or in establishing nerve-muscle connectivity. Altogether, the data presented herein provide a better understanding of the role of Hoxa13 in both the embryonic and extra-embryonic compartment. Moreover, our results will be of key importance for further investigations aimed at unravelling transcriptional mechanisms underlying Hoxa gene regulation in extra embryonic tissues.
34

Contrôle de l'expression du gène HOXA9 dans les cellules souches/progénitrices hématopoïétiques : rôle des enzymes épigénétiques MOZ et MLL, et du facteur de polyadénylation Symplekin / Control of the HOXA9 gene expression in the hematopoietic stem/progenitor cells : role of the epigenetic factors MOZ, MLL and of the polyadenylation factor Symplekin

Largeot, Anne 25 June 2013 (has links)
Mon travail de thèse porte sur l’étude du rôle de l’histone acétyl-transférase MOZ et de l’histone méthyle-transférase MLL dans l’hématopoïèse. Elles contrôlent l’expression de nombreux gènes, nottament des gènes HOX, des facteurs de transcription connus pour leur rôle dans l’hématopoïèse normale et pathologique. Les deux protéines ont des gènes cibles communs tel qu'HOXA9. Ces observations nous ont conduit à rechercher une coopération fonctionnelle entre MOZ et MLL. Nous avons montré que MOZ était associée avec MLL dans les cellules souches/progénitrices humaines CD34+ afin d’activer la transcription des gènes HOXA5, HOXA7 et HOXA9. En effet, les deux protéines interagissent et sont recrutées au niveau de leur promoteur. Nous avons mis en évidence une interférence fonctionnelle entre ces deux facteurs épigénétiques, puisque MOZ est nécessaire au recrutement et à l’activité enzymatique de MLL au niveau des gènes HOXA5, HOXA7 et HOXA9 et réciproquement.Afin de caractériser le mécanisme d’action impliquant la coopération entre MOZ et MLL, nous avons recherché d’autres partenaires associés à ce duo. Nous avons identifié la Symplekin, un membre de la machinerie de polyadénylation. Nous avons mis en évidence l’interaction de la Symplekin avec MOZ et MLL dans les cellules de la lignée hématopoïétique humaine KG1. Les trois protéines sont co-recrutées sur le promoteur du gène HOXA9. Nous avons démontré le rôle ambivalent de la Symplekin. Bien qu’elle soit importante pour la polyadénylation et par conséquent pour la stabilité de l’ARN Hoxa9, la Symplekin empêche le recrutement de MOZ et de MLL au niveau du gène HOXA9, conduisant ainsi à une diminution de sa transcription. / My thesis project has consisted of the study of MOZ, and MLL. They are epigenetic regulators. MOZ and MLL activate transcription of HOX genes, which are transcription factors essential during haematopoiesis. MOZ and MLL have some target genes in common. In our study, we characterised a cooperation between MOZ and MLL in human haematopoietic stem/progenitor cells CD34+. They are both recruited onto HOX promoters. MOZ is essential for MLL recruitment, and this is reciprocal. In conclusion, we provided an example of a mechanism involving a direct cross-talk between two histone modifying enzymes.In order to dissect the mechanism of action of this complex, we decided to identify novel proteins interacting with both MOZ and MLL. A member of the RNA polyadenylation machinery has been isolated: Symplekin. We confirmed the interaction between MOZ, MLL and Symplekin in the human haematopoietic immature cell line KG1. We showed that Symplekin is co-recruited to HOXA9 promoter along with MOZ and MLL. We demonstrated the dual role of this member of the polyadenylation machinery. Indeed, besides the fact that Symplekin is important for Hoxa9 polyadenylation, thus its stability, it prevents MOZ and MLL recruitment onto HOXA9 promoter, leading to a decrease of HOXA9 transcription.Our work improved the understanding of the mechanism of action of MOZ and MLL in HOX control.
35

Hox genes and the evolution of adaptive phenotypes / Les gènes Hox et l'évolution des phénotypes adaptatives

Nagui Refki Khalil, Peter 09 December 2014 (has links)
Les populations sont soumises à des pressions sélectives qui agissent sur certains traits entraînant une divergence phénotypique. L'évolution des morphologies adaptatives est souvent liée avec des changements de structures préexistantes. Les insectes semi-Aquatiques ont subi une croissance de pattes exagérée qui est associée à leur adaptation et locomotion efficace à la surface de l'eau. Cette croissance excessive a facilitée l'exploitation de l'habitat aquatique restreint pour les espèces terrestres apparentées. En outre, le groupe dérivé des gerris a subi des modifications supplémentaires au niveau des pattes, de sorte que la deuxième patte (P2) est plus longue que la troisième patte (P3). Ce plan d'organisation inversé par rapport à celui des espèces terrestres, est associé à la spécialisation pour une vie sur l'eau. Les gerris ont acquis un mode de locomotion dérivée qui consiste à ramer par des mouvements simultanés de leurs P2 et des mouvements plus subtils de leurs P3 pour s'orienter. La structure et la croissance des pattes des insectes semi-Aquatiques sont réalisées durant l'embryogenèse. En effet, la nymphe qui éclot possède des pattes fonctionnelles. Il a été démontré que le facteur de transcription Hox, Ubx, est impliqué dans cette inversion du plan des pattes. Cependant, les mécanismes génétiques responsables de ces adaptations restent toujours obscurs. La thèse présentée examine ces questions à travers deux axes : premièrement, déterminer les gènes et les voies de signalisation responsables du développement et de la croissance remarquable des pattes ; deuxièmement, étudier le rôle du gène Hox impliqué dans l'inversion du plan des pattes caractéristique des gerris / Populations are faced with selective pressures that act on certain traits resulting in phenotypic divergence. The evolution of adaptive morphological traits is often associated with changes in pre-Existing structures. In semiaquatic insects, a dramatic growth of thoracic appendages is associated with their adaptation and efficient locomotion on the water surface. This particular leg allometry facilitated the exploitation of aquatic habitats, a restricted niche for their terrestrial relatives; and hence opens a new array of ecological opportunities. Additionally, the derived group of water striders has undergone further appendage modification, such that T2-Legs are longer than T3-Legs, a ground plan associated with the specialization to open water. Water striders have evolved a derived mode of locomotion through rowing on water. They move their mid-Legs in simultaneous sweeping strokes for propulsion, and move their hind-Legs in fine movements for orientation. Leg specification and elongation in semiaquatic insects happens during early embryogenesis as the newly hatching nymphs emerge with functional legs. The Hox transcription factor Ubx was found to be implicated in the reversal in leg ground plan. Nonetheless, the genetic mechanisms underlying these leg adaptive changes are still poorly understood. The presented thesis investigates these questions through two main goals: first, to uncover the genes and pathways implicated in the development and dramatic elongation of the legs; second, to examine the dynamics of Hox control responsible for the reversal in leg ground plan characteristic of water striders
36

Caractérisation du rôle et des mécanismes d’action des gènes Hoxa dans l’hématopoïèse adulte

Lebert-Ghali, Charles-Étienne 12 1900 (has links)
Chez les humains, un large pourcentage de leucémies myéloïdes et lymphoïdes exprime des gènes Homéobox (Hox) de façon aberrante, principalement ceux du groupe des gènes Hoxa. Cette dérégulation de l’expression des gènes Hox peut provenir directement des translocations impliquant des gènes Hox ou indirectement par d’autres protéines ayant un potentiel oncogénique. De plus, plusieurs études indiquent que les gènes Hox jouent un rôle essentiel dans l'initiation de diverses leucémies. Comprendre le fonctionnement des gènes Hox dans l'hématopoïèse normale est donc une condition préalable pour élucider leurs fonctions dans les leucémies, ce qui pourrait éventuellement conduire à l’élaboration de nouveaux traitements contre cette maladie. Plusieurs études ont tenté d’élucider les rôles exacts des gènes Hox dans l'hématopoïèse via l’utilisation de souris mutantes pour un seul gène Hox. Or, en raison du phénomène de redondance fonctionnelle chez cette famille de gènes, ces études ont été peu concluantes. Il a été précédemment démontré que dans une population de cellules enrichies en cellules souches hématopoïétiques (CSH), les gènes du cluster Hoxa sont plus exprimés que les gènes Hox des autres clusters. Aussi, il a été établi que les gènes du cluster Hoxb sont non essentiels à l’hématopoïèse définitive puisque les CSH mutantes pour les gènes Hoxb1-9 conservent leur potentiel de reconstitution à long terme. En nous basant sur ces données, nous avons émis l'hypothèse suivante : les gènes Hoxa sont essentiels pour l'hématopoïèse normale adulte. Pour tester notre hypothèse, nous avons choisi d’utiliser un modèle de souris comportant une délétion pour l’ensemble des gènes Hoxa. Dans le cadre de cette recherche, nous avons démontré que les CSH, les progéniteurs primitifs et les progéniteurs des cellules B sont particulièrement sensibles au niveau d'expression des gènes Hoxa. Plus particulièrement, une baisse de la survie et une différenciation prématurée semblent être à l’origine de la perte des CSH Hoxa-/- dans la moelle osseuse. L’analyse du profil transcriptionnel des CSH par séquençage de l'ARN a révélé que les gènes Hoxa sont capables de réguler un vaste réseau de gènes impliqués dans divers processus biologiques. En effet, les gènes Hoxa régulent l’expression de plusieurs gènes codant pour des récepteurs de cytokine. De plus, les gènes Hoxa influencent l’expression de gènes jouant une fonction dans l’architecture de la niche hématopoïétique. L’expression de plusieurs molécules d’adhésion est aussi modulée par les gènes Hoxa, ce qui peut affecter la relation des CSH avec la niche hématopoïétique. L’ensemble de ces résultats démontre que les gènes Hoxa sont d'importants régulateurs de l'hématopoïèse adulte puisqu’ils sont nécessaires au maintien des CSH et des progéniteurs grâce à leurs effets sur plusieurs processus biologiques comme l'apoptose, le cycle cellulaire et les interactions avec la niche. / In humans, a large percentage of myeloid and lymphoid leukemias exhibit aberrant Homeobox (Hox) genes expression, predominantly Hoxa genes. This aberrant expression is known to be caused by either translocations involving Hox genes or indirect activation of Hox genes. In addition, evidence now indicates a critical role for Hox genes in the initiation of leukemias. Clearly, understanding how Hox genes function in normal hematopoiesis is prerequisite to elucidate their involvement in leukemogenesis and this may eventually lead to new treatments for this disease. Attempts to determine the precise role(s) of Hox genes in normal hematopoiesis using single gene loss of function mutants have shown little success due to functional complementation by the remaining Hox genes. We previously showed that the Hoxa genes are much higher expressed in enriched hematopoietic stem cell (HSC) populations than the other members of the Hox gene family. Moreover, Hoxb cluster genes were found to be dispensable for HSCs long-term repopulation of irradiated mice. Thus, we hypothesize that Hoxa genes are critical for normal adult hematopoiesis. We have used a multi-gene knockout (KO for the entire Hoxa cluster) approach to thoroughly evaluate this issue. In this thesis, we showed that HSC, primitive progenitors and B cell progenitors are particularly sensitive to the levels of Hoxa gene expression. Furthermore, a lower survival and a premature differentiation account for the loss HSC Hoxa-/- in bone marrow. Differential expression profiling by RNASeq revealed that Hoxa genes are capable of regulating a broad array of genes involved in various biological processes. Indeed, Hoxa genes regulate the expression of several genes coding for cytokine receptors. Furthermore, Hoxa genes modulate the expression of genes implicated in the regulation and formation of the niche architecture. The expression of several adhesion molecules is also modulated by the Hoxa genes, which can affect the relationship of HSC with the hematopoietic niche. Through their action on several biological processes such as apoptosis, cell cycle and niche interactions, Hoxa genes are necessary for maintenance of HSC and progenitors. Taken together, these results demonstrate that Hoxa genes are important regulators of adult hematopoiesis.
37

Effet de la surexpression du gène Hoxb4 sur la prolifération homéostatique des cellules T mémoires

Frison, Héloïse 08 1900 (has links)
Les cellules T mémoires (Tm) protègent l’organisme contre les réinfections de pathogènes qu’il a déjà combattu. Les Tm possèdent plusieurs propriétés en commun avec les cellules souches hématopoïétiques (CSH), notamment la capacité de se différencier, de s’auto-renouveler et de maintenir une population relativement constante au sein de l’organisme via des mécanismes homéostatiques. Il a été démontré que Hoxb4, un membre de la famille des facteurs de transcription Hox, était capable d’induire l’expansion des CSH in vivo et in vitro de façon rapide. Au vu de ces parallèles, nous avons posé l’hypothèse que la surexpression de Hoxb4 pourrait induire l’expansion de populations de Tm. Nous avons analysé les populations de Tm et lymphocytes T naïfs (Tn) dans les organes lymphoïdes de souris transgéniques surexprimant Hoxb4 et les avons comparées à des souris de type sauvage (wt). Alors que la fréquence des cellules T matures Hoxb4 diminuait avec l’âge, leur phénotype ainsi que leur viabilité demeuraient inchangés. Ensuite, nous avons procédé à des transplantations en compétition de Tm (CD4+CD44hi) Hoxb4 et wt chez des hôtes dépourvus de lymphocytes T (CD3-/-) dans le but d’évaluer leur contribution à la reconstitution du compartiment T après 2 mois. Au final, les Tm wt avait contribué un peu plus que les Tm Hoxb4 à la reconstitution (~60%). Des analyses fonctionnelles et phénotypiques ont montré que les Tm Hoxb4 possédaient une fonctionnalité normale, mais se distinguaient des Tm wt par la présence d’une faible population qui présentait un phénotype « mémoire central » (Tcm), conférant habituellement une longévité accrue. Les cellules des ganglions lymphatiques totaux des hôtes furent transplantées de façon sérielle chez trois générations de nouveaux hôtes. Le phénotype Tcm observés chez les Tm Hoxb4 était récapitulé chez les hôtes secondaires uniquement. Les ratios sont demeurés en faveur des Tm wt lors des deux transplantations suivantes, mais les Tm Hoxb4 ont commencé à montrer un avantage compétitif chez certains hôtes quaternaires. Une transplantation en compétition à court terme de Tm Hoxb4 et wt marqués avec un marqueur cytoplasmique ont démontré la présence chez les Tm Hoxb4 seulement d’une faible population CD62Lhi proliférant lentement. Ainsi, l’expansion préférentielle de Tcm CD4 par le biais d’une sélection ou d’une différenciation induite par la surexpression de Hoxb4 pourrait potentiellement leur permettre de maintenir un état de quiescence leur permettant de persister plus longtemps suite à des transplantations sérielles. / Memory T cells (Tm) protect the organism against reinfection from pathogens they’ve already encountered. Tm share characteristics with hematopoietic stem cells (HSC), such as the capacity to differentiate, self-renew and maintain a relatively constant population via homeostatic mechanisms. Hoxb4, a member of the Hox genes family of transcription factors, has been shown to expand HSCs rapidly in vivo and in vitro. Thus, drawing from these parallels we hypothesise that Hoxb4 overexpression could lead to expansion of Tm populations. Tm and naïve T cell (Tn) populations were analysed in the lymphoid organs of young and aged transgenic mice overexpressing Hoxb4 in comparison with wild type (wt) mice. While the frequencies of mature Hoxb4 T cells in lymphoid organs seemed to decline with age, the phenotype or the cell viability remained unaffected. Next, CD4+CD44hi Hoxb4 Tm were transferred into T cell deficient (CD3-/-) hosts in competition with wt CD4+CD44hi Tm and evaluated for their contribution to T cell reconstitution after 2 months. Engraftment of wt Tm in secondary lymphoid organs was slightly higher than Hoxb4 Tm (~60%). Functional assays and phenotypic analysis showed that Hoxb4 Tm exhibited normal functionality, but in contrast to wt Tm, a fraction of Hoxb4 Tm exhibited a more central memory (Tcm) phenotype, indicative of a longer lifespan. Total lymph nodes from hosts were serially re-transplanted for three generations. The Tcm phenotype of the Hoxb4 Tm present in the primary hosts was recapitulated in the secondary but not in the tertiary hosts. The ratios remained in favor of the wt Tm after two subsequent expansion rounds, but Hoxb4 Tm showed a competitive advantage over wt Tm in some quaternary hosts. Cell tracking of a short term transplantation of Hoxb4 and wt Tm in competition exposed a small population of CD62Lhi cells displaying slow proliferation in the Hoxb4 Tm only. Thus preferential CD4+ Tcm expansion by selection or differentiation could potentially allow Hoxb4 Tm to persist longer following serial transplantations due to a more quiescent state.
38

La collaboration entre l'oncogène E2A-PBX1 et Hoxa9 lors de l'induction de B-ALL implique l'activation de Flt3

Hassawi, Mona 12 1900 (has links)
La protéine de fusion E2A-PBX1 induit une leucémie lymphoblastique aigüe des cellules B pédiatrique chez l’humain. E2A-PBX1 possède de puissantes propriétés de trans-activation et peut se lier à l’ADN ainsi qu’aux protéines homéotiques (HOX) via des domaines conservés dans sa portion PBX1, ce qui suggère qu’une dérégulation des gènes cibles de HOX/PBX1 contribue à la leucémogénèse. Précédemment, Bijl et al. (2008) ont démontré que certains gènes Hox collaborent de manière oncogénique avec E2A-PBX1, et que ces interactions sont cellules-spécifiques et varient en fonction du gène Hox impliqué. Une mutagénèse d’insertion provirale suggère et supporte la collaboration des gènes Hoxa et E2A-PBX1 lors de la leucémogénèse des cellules B. La présence de ces interactions dans les cellules B et leur implication dans l’induction des B-ALL est pertinente pour la compréhension de la maladie humaine, et reste encore mal comprise. Notre étude démontre qu’Hoxa9 confère un avantage prolifératif aux cellules B E2A-PBX1. Des expériences de transplantation à l’aide de cellules B E2A-PBX1/Hoxa9 positives isolées de chimères de moelle osseuse démontrent qu’Hoxa9 collabore avec E2A-PBX1 en contribuant à la transformation oncogénique des cellules, et qu’Hoxa9 seul n’induit aucune transformation. Une analyse par Q-RT-PCR nous a permis de démontrer une forte inhibition de gènes spécifiques aux cellules B dans les leucémies co-exprimant Hoxa9 et E2A-PBX1, en plus d’une activation de Flt3, suggérant une inhibition de la différenciation des cellules B accompagnée d’une augmentation de la prolifération. De plus, la surexpression de Hoxa9 dans des cellules leucémiques de souris transgéniques E2A-PBX1, confère aussi un avantage prolifératif aux cellules in vitro, qui semblent être influencé par une augmentation de l’expression de Flt3 et Pdgfδ. En conclusion, nous démontrons pour la première fois à l’aide d’un modèle murin qu’Hoxa9 collabore avec E2A-PBX1 lors de la transformation oncogénique des cellules B et que la signalisation via Flt3 est impliquée, ce qui est potentiellement pertinent pour la maladie humaine. / The fusion protein E2A-PBX1 induces pediatric B cell leukemia in human. It has strong transactivating properties and can bind to DNA and homeobox (HOX) proteins through conserved domains in the PBX1 portion, suggesting that deregulation of HOX/PBX target genes contribute to leukemogenesis. Previously, we reported oncogenic interactions between Hox genes and E2A-PBX1, which are dependent on cell type as well as on the particular Hox member. A proviral insertional mutagenesis screen provided support for collaboration between Hoxa genes and E2A-PBX1 in B cell leukemogenesis. Whether these interactions occur in B cells and lead to B-ALL, relevant for human disease is still not clear. Here we report that Hoxa9 confers a proliferative advantage to E2A-PBX1 B cells. Transplantation experiments with E2APBX1/Hoxa9 positive B cells isolated from bone marrow (BM) chimeras showed that Hoxa9 interacts with E2A-PBX1 contributing to the oncogenic transformation of B cells, but is unable to transform B cells alone. Q-RT-PCR analysis demonstrated a strong repression of B cell specific genes in leukemias co-overexpressing Hoxa9 and E2A-PBX1 in addition to Flt3 activation, indicating inhibition of B cell differentiation in combination with enhanced proliferation. Overexpression of Hoxa9 in E2A-PBX1 mouse leukemic B cells also resulted in a growth advantage in vitro, likely mediated by the enhanced expression of Flt3 and Pdgfδ. In conclusion we show for the first time that Hoxa9 collaborates with E2A-PBX1 in the oncogenic transformation of B cells in a mouse model that involves Flt3 signaling, which is potentially relevant to human disease.
39

Implications des complexes Polycomb et Trithorax au cours du développement précoce chez Ciona intestinalis / Implications of Polycomb and Trithorax complexes in the early development of Ciona intestinalis

Liabeuf-Le Goff, Emilie 18 December 2012 (has links)
Implications des complexes Polycomb et Trithorax au cours du développement précoce chez Ciona intestinalisLes protéines des groupes Polycomb (PcG) et Trithorax (TrxG) ont été initialement découvertes chez Drosophila melanogaster. Ces deux groupes sont classiquement connus pour leurs rôles respectifs de répresseurs et d'activateurs épigénétiques qui contrôlent et maintiennent les états chromatiniens au cours du temps. Ces facteurs régulent de nombreux gènes cibles dont les gènes homéotiques. Au cours de ma thèse, j'ai étudié trois composants de ces deux groupes : Enhancer of zeste (E(z)), appartenant au complexe PRC2 du PcG et responsable du dépôt de la marque de répression génique H3K27me3, Polyhomeotic (Ph), appartenant au complexe PRC1 du PcG et dont le rôle exact reste à déterminer, et Trithorax (Trx), appartenant au complexe TAC1 du TrxG et responsable du dépôt de la marque d'activation génique H3K4me3. Jusqu'à présent, aucune étude n'a abordé la régulation épigénétique via les PcG et TrxG chez l'ascidie solitaire Ciona intestinalis. Cette espèce présente un cluster des gènes Hox désorganisé et ne possède pas la protéine Polycomb (Pc) du PRC1, responsable de la reconnaissance de la marque de répression H3K27me3 déposée par la protéine E(z).Nos travaux montrent que la protéine E(z) est fonctionnelle et conserve son activité méthyltransférase sur le résidu H3K27 chez Ciona intestinalis. Nous avons ensuite observé, par des expériences de knockdown par micro-injection de morpholinos, que les inhibitions protéiques d'E(z), Ph et Trx ont des conséquences dramatiques sur la différenciation et la mise en place des différents tissus au cours du développement larvaire, notamment sur la mise en place de la notochorde puisque celle-ci est totalement absente chez les morphants E(z) et Ph. Les défauts de phénotype du morphant E(z) sont corrélés à la perte du dépôt d'H3K27me3 et nous avons mis en évidence, lors de l'inhibition d'E(z), une dérépression des gènes tissu-spécifiques impliqués dans le développement embryonnaire précoce alors que les gènes tardivement exprimés sont réprimés. De plus, l'expression des gènes Hox n'est pas significativement modifiée au cours du développement embryonnaire lorsque la protéine E(z) est inhibée, à l'exception du gène Hox12 qui est déréprimé, comme attendu.L'ensemble de ces résultats permet d'émettre l'idée innovante selon laquelle les protéines des PcG et TrxG jouent un rôle déterminant dans la régulation de l'expression génique lors de l'embryogénèse de Ciona intestinalis tout en ayant une implication mineure dans la régulation de l'expression des gènes Hox à ce stade du développement. / Implications of Polycomb and Trithorax complexes in the early development of Ciona intestinalisPolycomb and Trithorax group (PcG and TrxG) proteins were discovered originally in Drosophila melanogaster. Both groups are classically known for their roles in the maintenance of silenced and active chromatin states over time, respectively. These factors regulate many target genes including the homeotic genes. During my PhD, I studied three components of these two groups: Enhancer of zest (E(z)), belonging to the PRC2 complex of PcG and responsible for H3K27me3 mark deposit for gene repression, Polyhomeotic (Ph), belonging to the PRC1 complex of PcG whose role remains to be determined, and Trithorax (Trx), belonging to the TAC1 complex of TrxG and responsible for H3K4me3 mark deposit for gene activation. Until now, no study addresses the epigenetic regulation mediated by PcG and TrxG in the solitary ascidian Ciona intestinalis. This specie has a disorganized Hox cluster and in which the Polycomb (Pc) protein of PRC1, responsible for the recognition of the repressive H3K27me3 mark, is absent.Our work shows that the E(z) protein is functional and retains its methyltransferase activity on H3K27 residue in Ciona intestinalis. Then, we demonstrated, by knockdown experiments with morpholino microinjection, that the inhibition of E(z), Ph and Trx has dramatic consequences on differentiation and on the establishment of different tissues during larval development, particularly on the notochord establishment since it is totally absent in E(z) and Ph morphants. E(z) morphant phenotypic defects are correlated with lack of H3K27me3 mark deposit and we highlighted that, during the E(z) inhibition, tissue-specific genes implied in early development are de-repressed while late-expressed genes are down-regulated. In addition among Hox genes, only Hox12 expression is significantly modified and found to be de-repressed in E(z) morphant context, as expected.Altogether, our results present the innovative idea that the PcG and TrxG proteins play a major role in the gene expression regulation during embryogenesis of Ciona intestinalis while having a minor involvement in the regulation of Hox genes expression at this stage of development.
40

Studium interakcí interleukinu-1alfa se složkami eukaryotického transkripčního aparátu / Elucidating the interactions of interleukin-1alpha with components of the eukaryotic transcription machinery

Zámostná, Blanka January 2013 (has links)
4 ABSTRACT Interleukin-1α (IL-1α) is a pleiotropic cytokine and a key mediator of host immune response. It is synthesised as a 31-kDa precursor, that is cleaved by the cysteine protease calpain into the 17-kDa mature IL-1α and the 16-kDa N- terminal peptide of IL-1α (IL-1αNTP). Although IL-1α can be secreted, act on target cells through the surface receptor IL-1RI and trigger the signal transduction pathway, increasing evidence points toward the involvement of IL-1α in certain nuclear processes. IL-1αNTP is highly conserved among higher eukaryotes and contains a nuclear localisation sequence; indeed, both the precursor and IL-1αNTP are found in the cell nucleus. Previously, a genetic interaction of IL-1α with nuclear histone acetyltransferase (HAT) complexes has been reported from mammalian cells and, interestingly, also from the heterologous yeast model. This thesis extends the research of the nuclear function of IL-1α and demonstrates that IL-1α physically associates with the HAT/Core module of yeast SAGA and ADA HAT complexes. Results of the HAT subunit gene knock-out experiments followed by a set of co-immunoprecipitations also suggest a novel model of the yeast SAGA complex assembly, in which ADA appears to represent only a partly functional HAT complex. In its natural milieu of mammalian cells, IL-1α...

Page generated in 0.0701 seconds