71 |
Hydrogen Production By Microorganisms In Solar BioreactorUyar, Basar 01 February 2008 (has links) (PDF)
The main objective of this study is exploring the parameters affecting photobiological hydrogen production and developing anaerobic photobioreactor for efficient photofermentative hydrogen production from organic acids in outdoor conditions. Rhodobacter capsulatus and Rhodobacter sphaeroides strains were used as microorganisms.
EU project &ldquo / Hyvolution&rdquo / targets to combine thermophilic fermentation with photofermentation for the conversion of biomass to hydrogen. In this study, the effluent obtained by dark fermentation of Miscanthus hydrolysate by T. neapolitana was fed to photobioreactor for photofermentation by R. capsulatus. Hydrogen yield was 1.4 L/Lculture showing that the integration of dark and photofermentation is possible.
Innovative elements were introduced to the photobioreactor design such as removal of argon flushing. An online gas monitoring system was developed which became a commercial product. It was found that the light intensity should be at least 270 W/m2 on the bioreactor surface for the highest hydrogen productivity and the hydrogen production decreased by 43 % if infrared light was not provided to the bioreactor.
Scale-up of photofermentation process to 25L was achieved yielding 27L hydrogen in 11 days by R. capsulatus on acetate/lactate/glutamate (40/7.5/2 mM) medium.
The outdoor application of the system was made. Shading and water spraying were adapted as cooling methods for controlling the temperature of the outdoor bioreactor. It was found that uptake hydrogenase deleted mutant of R. capsulatus show better hydrogen productivity (0.52 mg/L.h) compared to the wild type parent (0.27 mg/L.h) in outdoor conditions. It was also shown that the hydrogen production depended on the sunlight intensity received.
|
72 |
Phototrophic Hydrogen Production By Agar-immobilized Rhodobacter CapsulatusElkahlout, Kamal E. M. 01 March 2011 (has links) (PDF)
photosynthetic bacteria is attractive field as production is fueled by solar energy. Hydrogen production potential of two photosynthetic bacteria R.capsulatus (DSM1710 wild type and R.capsulatus YO3 Hup- uptake hydrogenase deleted mutant strain) were examined in agar immobilized systems. In the present work agar and glutamate concentrations were optimized for immobilization of bacteria while feeding bacteria with 40/2-4 mM acetate/ glutamate. Immobilized bacteria produced hydrogen for 420-1428 hours covering 5-7 rounds. Optimizing of acetate concentration indicated that 60 mM produced the highest observed yield around 90-95%.
Results shown that 2.5 mg dry cell weight/mL is the optimum cell concentration for wild type strain while 5 mg dry cell weight/mL was optimum for YO3 strain. Using either glycerol or sodium dithionite caused decrease in hydrogen production capacity of immobilized bacteria. It was observed that agar provided protection against inhibition effect of ammonium. Co-
v
immobilization of bacteria with packed cells of H. salinarium increased total hydrogen production capacity by about 1.14-1.41 folds. Hydrogen production by immobilized bacteria in panel photobioreactor was achieved by a novel system which allowed long term hydrogen production. Immobilized R. capsulatus DSM 1710 in panel reactor worked for about 67-82 days covering 4-5 rounds while immobilized R. capsulatus YO3 worked for 69-72 days covering seven rounds.
|
73 |
Photobiological Hydrogen Production From Sugar Beet MolassesSagir, Emrah 01 February 2012 (has links) (PDF)
The main aim of this study was to investigate biological hydrogen production from sucrose and molasses by purple non-sulphur bacteria (PNS). The hydrogen production capacities of four different PNS bacteria (Rhodobacter capsulatus (DSM 1710), Rhodobacter capsulatus YO3 (Hup-), Rhodopseudomonas palustris (DSM 127) and Rhodobacter sphaeroides O.U.001 (DSM 5864)) were tested on sucrose and molasses. The photobiological hydrogen production were performed in 50 ml and 150 ml small scale photobioreactors, in batch mode. The produced hydrogen quantities, bacterial growth profiles and pH of the media were recorded through the
photobiological hydrogen production processes. Organic acids and sucrose consumption rates were determined by HPLC during the experiments. The maximum hydrogen productivitiy of 0.78 (mmol/lc.h) and 0.55 (mmol/lc.h) was obtained by R. palustris (DSM 127) on sucrose and molasses, respectively. Secondly, co-cultivation of these bacterial strains was studied. The maximum hydrogen productivity by co-cultivation of R. sphaeroides O.U.001 (DSM 5864) and R. palustris (DSM 127) was found as 1.0 (mmol/lc.h).
|
74 |
Ligand effects on bioinspired iron complexesMejia Rodriguez, Ma. del Rosario 01 November 2005 (has links)
The synthesis of diiron thiolate complexes was carried out using two ligands
that were expected to furnish improved catalytic activity, solubility in water, and
stability to the metal complexes. The water-soluble phosphine 1,3,5-triaza-7-
phosphaadamantane, PTA, coordinates to the Fe centers forming the disubstituted
complex (m-pdt)[Fe(CO)2PTA]2, which presents one PTA in each iron in a transoid
arrangement. Substitution of one CO ligand in the (m-pdt)[Fe(CO)3]2 parent complex
forms the asymmetric (m-pdt)[Fe(CO)3][Fe(CO)2PTA]. Enhanced water solubility was
achieved through reactions with electrophiles, H+ and CH3
+, which reacted with the N
on the PTA ligand forming the protonated and methylated derivatives, respectively.
The 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene), IMes, was reacted with
(m-pdt)[Fe(CO)3]2 yielding the asymmetric (m-pdt)[Fe(CO)3][Fe(CO)2IMes], an
electron rich, air stable complex that does not show reactivity with H+.
Electrocatalytic production of hydrogen was studied for the all-CO, bis-PMe3,
mono- and di-PTA FeIFeI complexes, as well as the PTA-protonated and -methylated
derivatives. The all-CO species produce H2, in the presence of the weak HOAc, at their second reduction event, FeIFe0 ?? Fe0Fe0, that occurs at ca. ??1.9 V, through an
EECC mechanism. The mono- and di-substituted phosphine complexes present
electrocatalytic production of H2 from the Fe0FeI redox state; this reduction takes place
at ??1.54 V for (m-pdt)[Fe(CO)3][Fe(CO)2PTA], and at ca. ??1.8 for the disubstituted
PMe3 and PTA derivatives. A positive charge on the starting complex does not have
an effect on the production of H2. It was found that the protonated and methylated
derivatives are not the catalytic species for H2 production. At their first reduction event
the neutral precursor forms, and catalysis occurs from the FeIFeI complex in all cases.
The possibility of enhanced catalytic activity in the presence of H2 O was
explored by conducting electrochemical experiments in the mixed CH3CN:H2O solvent
system for the PTA-substituted complexes. The reduction potential of the catalytic
peak is shifted to more positive values by the presence of H2 O. The cyclic
voltammogram of {(m-pdt)[Fe(CO)2(PTA?? H)]2}2+ in CH3CN:H2O 3:1 shows the
reduction of a more easily reduced species in the return scan. This curve-crossing
event provides evidence for the (h2-H2)FeII intermediate proposed in the ECCE
mechanism.
|
75 |
CO<sub>2</sub> mitigation in advanced power cyclesWolf, Jens January 2004 (has links)
<p>This thesis encompasses CO<sub>2</sub> mitigation using three different processes: i) natural gas-fired combined cycle with chemical looping combustion (CLC), ii) trigeneration of electrical power, hydrogen and district heating with extended CLC, iii) steam-based gasification of biomass integrated in an advanced power cycle. </p><p>In CLC, a solid oxygen carrier circulates between two fluidised-bed reactors and transports oxygen from the combustion air to the fuel; thus, the fuel is not mixed with air and an inherent CO<sub>2</sub> separation occurs. In this thesis, CLC has been studied as an alternative process for CO<sub>2</sub> capture in a natural gas-fired combined cycle (NGCC). The potential efficiency of such a process using a turbine inlet temperature of 1200 °C and a pressure ratio of 13 is between 52 and 53 % when including the penalty for CO<sub>2 </sub>compression to 110 bar. It is shown that this efficiency cannot be further improved by including an additional CO<sub>2</sub> turbine. Two conceivable reactor designs for CLC in an NGCC are presented. Top-firing has been studied as an option to overcome a temperature limitation in the CLC reactor system. The degree of CO<sub>2</sub> capture is shown versus the temperature in the CLC reactor and its combustion efficiency. CLC has the potential to reach both a higher efficiency and a higher degree of CO<sub>2 </sub>capture than conventional post combustion CO<sub>2</sub> capture technique. However, further research is needed to solve technical problems as, for example, temperature limitations in the reactor to reach this potential. </p><p>Extended CLC (exCLC) is introduced, in which hydrogen is not only produced but also inherently purified. The potential efficiency of a novel tri-generation process for hydrogen, electricity and district heating using exCLC for CO<sub>2 </sub>capture is investigated. The results show that a thermal efficiency of about 54% might be achieved. </p><p>A novel power process named evaporative biomass air turbine (EvGT-BAT) for biomass feedstock is presented. This process contains a steam-based gasification of biomass, which is integrated in an externally fired gas turbine cycle with top-firing. In the EvGT-BAT process, the steam-based gasification is conducted in an entrained-flow tubular reactor that is installed in the SFC as a heat exchanger. The EvGT-BAT process has the potential to generate electrical power from biomass with an efficiency of 41 %.</p>
|
76 |
CHEMICAL LOOPING GASIFICATION OF BIOMASS FOR HYDROGEN-ENRICHED GAS PRODUCTIONAcharya, Bishnu, Acharya, Bishnu 02 August 2011 (has links)
Environmental concerns and energy security are two major forces driving the fossil fuel based energy system towards renewable energy. In this context, hydrogen is gaining more and more attention in this 21st century. Presently, hydrogen is produced from reformation of fossil fuels, a process that could not address above two problems. For this it needs to be produced from a renewable carbon neutral energy source. Biomass has been identified as such a renewable energy source. Conversion of biomass through thermo-chemical gasification process in the presence of steam could provide a viable renewable source of hydrogen.
This thesis presents an innovative system based on chemical looping gasification for producing hydrogen-enriched gas from biomass. The other merit of this system is that it produces a pure stream of carbon dioxide by conducting in-process capture and regeneration of sorbent. A laboratory scale chemical looping gasification (CLG) system based on a circulating fluidized bed (CFB) is developed and tested. Experiments conducted to gasify sawdust in CFB-CLG system shows that it could produce a gas with as much as 80% hydrogen and as little as 5% carbon dioxide. A kinetic model is developed to predict the performance of the gasifier of a CFB-CLG system, and is validated against experimental results.
To understand the science of biomass gasification in the presence of steam and CaO, a number of additional studies are conducted. It show that for higher hydrogen and lower carbon dioxide concentration in the product gas, the optimum values of steam to biomass ratio, sorbent to biomass ratio, and operating temperature are 0.83, 2.0 and 670oC respectively.
In CFB-CLG system the sorbent goes through a series of successive calcination-carbonation cycles. Calcination studies in presence of three alternate media, nitrogen, carbon dioxide and steam show, that steam calcination is best among them. An empirical relation for calcination in presence of three media is developed. Owing to the sintering, irrespective of medium used for calcination, the conversion of CaO reduces progressively as it goes through alternate calcination-carbonation cycles. An additional empirical equation is developed to predict the loss in sorbent’s ability during carbonation.
|
77 |
Utilization of Nano-Catalysts for Green Electric Power GenerationShodiya, Titilayo January 2015 (has links)
<p>Nano-structures were investigated for the advancement of energy conversion technology because of their enhanced catalytic, thermal, and physiochemical interfacial properties and increased solar absorption. Hydrogen is a widely investigated and proven fuel and energy carrier for promising "green" technologies such as fuel cells. Difficulties involving storage, transport, and availability remain challenges that inhibit the widespread use of hydrogen fuel. For these reasons, in-situ hydrogen production has been at the forefront of research in the renewable and sustainable energy field. A common approach for hydrogen generation is the reforming of alcoholic and hydrocarbon fuels from fossil and renewable sources to a hydrogen-rich gas mixture.</p><p>Unfortunately, an intrinsic byproduct of any fuel reforming reaction is toxic and highly reactive CO, which has to be removed before the hydrogen gas can be used in fuel cells or delicate chemical processes. In this work, Au/alpha-Fe2O3 catalyst was synthesized using a modified co-precipitation method to generate an inverse catalyst model. The effects of introducing CO2 and H2O during preferential oxidation (PROX) of CO were investigated. For realistic conditions of (bio-)fuel reforming, 24% CO2 and 10% water the highest document conversion, 99.85% was achieved. The mechanism for PROX is not known definitively, however, current literature believes the gold particle size is the key. In contrast, we emphasize the tremendous role of the support particle size. A particle size study was performed to have in depth analysis of the catalysts morphology during synthesis. With this study we were also able to modify how the catalyst was made to further reduce the particle size of the support material leading to ~99.9% conversion. We also showed that the resulting PROX output gas could power a PEM fuel cell with only a 4% drop in power without poisoning the membrane electrode assembly.</p><p> The second major aim of this study is to develop an energy-efficient technology that fuses photothermal catalysis and plasmonic phenomena. Although current literature has claimed that the coupling of these technologies is impossible, here we demonstrate the fabrication of reaction cells for plasmon-induced photo-catalytic hydrogen production. The localized nature of the plasmon resonance allows the entire system to remain at ambient temperatures while a high-temperature methanol reformation reaction occurs at the plasmonic sites. Employing a nanostructured plasmonic substrate, we have successfully achieved sufficient thermal excitement (via localized surface plasmon resonance (LSPR)) to facilitate a heterogeneous chemical reaction. The experimental tests demonstrate that hydrogen gas can indeed be generated in a cold reactor, which has never been done before. Additionally, the proposed method has the highest solar absorption out of several variations and significantly reduces the cost, while increasing the efficiency of solar fuels.</p> / Dissertation
|
78 |
Utilizing the by-product oxygen of the hybrid sulfur process for synthesis gas production / by F.H. ConradieConradie, Frederik Hendrik January 2009 (has links)
This study introduces an evaluation of the downstream utilization of oxygen produced by
the hybrid sulfur process (HYS). Both technical and economic aspects were considered
in the production of primarily synthesis gas and hydrogen. Both products could increase
the economic potential of the hybrid sulfur process.
Based on an assumed 500MWt pebble bed modular nuclear reactor, the volume of
hydrogen and oxygen produced by the scaled down HYS was found to be 121 and 959
ton per day respectively.
The partial oxidation plant (POX) could produce approximately 1840 ton synthesis gas
per day based on the oxygen obtained from the HYS. The capital cost of the POX plant
is in the order of $104 million (US dollars, Base year 2008). Compared to the capital cost
of the HYS, this seems to be a relatively small additional investment. The production
cost varied from a best case scenario $9.21 to a worst case scenario of $19.36 per GJ
synthesis gas. The profitability analysis conducted showed favourable results, indicating
that under the assumed conditions, and with 20 years of operation, a NPV of $87 mil. and
an IRR of 19.5% could be obtained, for the assumed base case. The economic sensitivity
analysis conducted, provided insight into the upper and lower limitations of favourable
operation.
The second product that could be produced was hydrogen. With the addition of a water
gas shift and a pressure swing adsorption process to the POX, it was found that an
additional 221 ton of hydrogen per day could be produced. The hydrogen could be
produced in the best case at $2.34/kg and in the worst case at $3.76/kg. The investment
required would be in the order of $50 million. The profitability analysis for the base case
analysis predicts an NPV of $206 million and a high IRR of 23.0% under the assumed
conditions. On financial grounds it therefore seemed that the hydrogen production
process was favourable.
The thermal efficiency of the synthesis gas production section was calculated and was in
good agreement with that obtained from literature. The hydrogen production section’s
thermal efficiency was compared to that of steam methane reforming of natural gas
(SMR) and it was found that the efficiencies were comparable but the SMR process was
superior.
The hydrogen production capacity of the HYS process was increased by a factor of 1.83.
This implied that for every 1 kg of hydrogen produced by the HYS an additional 1.83 kg
was produced by the proposed process addition. This lowers the cost of hydrogen
produced by the HYS from $6.83 to the range of approximately $3.93 - $4.85/kg.
In the event of a global hydrogen economy, traditional production methods could very
well be supplemented with new and innovative methods. The integration of the wellknown
methods incorporated with the new nuclear based methods of hydrogen
production and chemical synthesis could facilitate the smooth transition from fossil fuel
based to environmentally friendly methods. This study presents one possible integration
method of nuclear based hydrogen production and conventional processing methods.
This process is technically possible, efficient and economically feasible. / Thesis (M.Ing. (Nuclear Engineering))--North-West University, Potchefstroom Campus, 2009.
|
79 |
Techno–economic investigation into nuclear centred steel manufacturing / Mammen, S.A.Mammen, Siju Abraham January 2011 (has links)
With the rising electricity, raw material and fossil fuel prices, as well as the relatively low selling price of steel, the steel industry has been put under strain to produce steel as cost–effectively as possible. Ideally the industry requires a cost–effective, stable source of energy to cater for its electricity and energy needs. Modern High Temperature Reactors are in a position to provide industries with not only electricity, but also process heat. Therefore, a study was conducted into the economic viability of centering the steel industry on nuclear power. This study considered 3 technology options: a nuclear facility to cater for solely the electricity needs of the steel industry; a nuclear facility producing hydrogen for the process needs of the steel industry; and a nuclear facility co–generating electricity and process heat for the steel industry.
An economic model for each of the 3 scenarios was developed that factored in the various cost considerations for each of the 3 options. In general, this included the construction costs, operational and maintenance cost, build time and interest rate of the financed amount. For each option, the model calculated the cost of production per unit output. The outputs were electricity for option 1, hydrogen for option 2, and both electricity and process heat for option 3. Each model was optimised based on a realistic best case scenario for the capital and operational costs and respective best case cost per unit outputs for each of the options were calculated.
Using the optimised cost model, it was shown that electricity produced from nuclear power was more cost effective than current electricity prices in South Africa. Similarly, it was shown that a nuclear facility could produce heat at a more cost–effective means than by the combustion of natural gas. Hydrogen proved to be not cost effective compared to reformed natural gas as a reducing agent for iron ore.
Based on the cost savings, a cash–flow analysis showed that the payback period for a nuclear power plant that produced electricity for the steel industry would be around 12 years at 0% interest and 15 years at 5% interest. Due to the long payback period and lack of certainty in the steel industry, any steel manufacturer would opt for purchasing electricity from a nuclear based electricity utility rather than building a facility themselves. Savings of over $70 million/year were achievable for a 2 million tonne/year electric arc furnace.
Overall this analysis showed that electricity generation is the only viable means for nuclear power to be integrated with the steel manufacturing industry. / Thesis (M.Ing. (Nuclear Engineering))--North-West University, Potchefstroom Campus, 2012.
|
80 |
Utilizing the by-product oxygen of the hybrid sulfur process for synthesis gas production / by F.H. ConradieConradie, Frederik Hendrik January 2009 (has links)
This study introduces an evaluation of the downstream utilization of oxygen produced by
the hybrid sulfur process (HYS). Both technical and economic aspects were considered
in the production of primarily synthesis gas and hydrogen. Both products could increase
the economic potential of the hybrid sulfur process.
Based on an assumed 500MWt pebble bed modular nuclear reactor, the volume of
hydrogen and oxygen produced by the scaled down HYS was found to be 121 and 959
ton per day respectively.
The partial oxidation plant (POX) could produce approximately 1840 ton synthesis gas
per day based on the oxygen obtained from the HYS. The capital cost of the POX plant
is in the order of $104 million (US dollars, Base year 2008). Compared to the capital cost
of the HYS, this seems to be a relatively small additional investment. The production
cost varied from a best case scenario $9.21 to a worst case scenario of $19.36 per GJ
synthesis gas. The profitability analysis conducted showed favourable results, indicating
that under the assumed conditions, and with 20 years of operation, a NPV of $87 mil. and
an IRR of 19.5% could be obtained, for the assumed base case. The economic sensitivity
analysis conducted, provided insight into the upper and lower limitations of favourable
operation.
The second product that could be produced was hydrogen. With the addition of a water
gas shift and a pressure swing adsorption process to the POX, it was found that an
additional 221 ton of hydrogen per day could be produced. The hydrogen could be
produced in the best case at $2.34/kg and in the worst case at $3.76/kg. The investment
required would be in the order of $50 million. The profitability analysis for the base case
analysis predicts an NPV of $206 million and a high IRR of 23.0% under the assumed
conditions. On financial grounds it therefore seemed that the hydrogen production
process was favourable.
The thermal efficiency of the synthesis gas production section was calculated and was in
good agreement with that obtained from literature. The hydrogen production section’s
thermal efficiency was compared to that of steam methane reforming of natural gas
(SMR) and it was found that the efficiencies were comparable but the SMR process was
superior.
The hydrogen production capacity of the HYS process was increased by a factor of 1.83.
This implied that for every 1 kg of hydrogen produced by the HYS an additional 1.83 kg
was produced by the proposed process addition. This lowers the cost of hydrogen
produced by the HYS from $6.83 to the range of approximately $3.93 - $4.85/kg.
In the event of a global hydrogen economy, traditional production methods could very
well be supplemented with new and innovative methods. The integration of the wellknown
methods incorporated with the new nuclear based methods of hydrogen
production and chemical synthesis could facilitate the smooth transition from fossil fuel
based to environmentally friendly methods. This study presents one possible integration
method of nuclear based hydrogen production and conventional processing methods.
This process is technically possible, efficient and economically feasible. / Thesis (M.Ing. (Nuclear Engineering))--North-West University, Potchefstroom Campus, 2009.
|
Page generated in 0.0505 seconds