Spelling suggestions: "subject:"hafnium oxide"" "subject:"hafniums oxide""
61 |
Atomic layer deposition of amorphous hafnium-based thin films with enhance thermal stabilitiesWang, Tuo, 1983- 02 February 2011 (has links)
The continuous scaling of microelectronic devices requires high permittivity (high-k) dielectrics to replace SiO₂ as the gate material. HfO₂ is one of the most promising candidates but the crystallization temperature of amorphous HfO₂ is too low to withstand the fabrication process. To enhance the film thermal stability, HfO₂ is deposited using atomic layer deposition (ALD), and incorporated with various amorphizers, such as La₂O₃, Al₂O₃, and Ta₂O₅. The incorporation is achieved by growing multiple ALD layers of HfO₂ and one ALD layer of MO[subscript x] (M = La, Al, and Ta) alternately (denoted as [xHf + 1M]), and the incorporation concentration can be effectively controlled by the HfO₂-to-MO[subscript x] ALD cycle ratio (the x value). The crystallization temperature of 10 nm HfO₂ increases from 500 °C to 900 °C for 10 nm [xHf + 1M] film, where x = 3, 3, and 1 for M = La, Al, and Ta, respectively. The incorporation of La₂O₃, and Ta₂O₅ will not compromise the dielectric constant of the film because of the high-k nature of La₂O₃, and Ta₂O₅. Angle resolved X-ray photoelectron spectroscopy (AR-XPS) reveals that when the HfO₂-to-MO[scubscript x] ALD cycle ratio is large enough (x > 3 and 4 for La and Al, respectively), periodic structures exist in films grown by this method, which are comprised of repeated M-free HfO₂ ultrathin layers sandwiched between HfM[subscript x]O[scubscript y] layers. Generally, the film thermal stability increases with thinner overall thickness, higher incorporation concentration, and stronger amorphizing capability of the incorporated elements. When the x value is low, the films are more like homogeneous films, with thermal stabilities determined by the film thickness and the amorphizer. When the x value is large enough, the periodically-repeated structure may add an extra factor to stabilize the amorphous phase. For the same incorporation concentration, films with an appropriately high periodicity may have an increased thermal stability. The manner by which the periodic structure and incorporated element affect thermal stability is explored and resolved using nanolaminates comprised of alternating layers of [scubscript y]HfO₂ and [xHf + 1M] × n, where y varied from 2 to 20, x varied from 1 to 2, and n varied from 4 to 22. / text
|
62 |
Recent progress for obtaining the ferroelectric phase in hafnium oxide based films: impact of oxygen and zirconiumSchroeder, Uwe, Materano, Monica, Mittmann, Terence, Lomenzo, Patrick D., Mikolajick, Thomas, Toriumi, Akira 09 November 2022 (has links)
Different causes for ferroelectric properties in hafnium oxide were discussed during the last decade including various dopants, stress, electrode materials, and surface energy from different grain sizes. Recently, the focus shifted to the impact of oxygen vacancies on the phase formation process. In this progress report, the recent understanding of the influence of oxygen supplied during deposition on the structural phase formation process is reviewed and supplemented with new data for mixed HfₓZr₁₋ₓOᵧ films. Even though polar and non-polar HfₓZr₁₋ₓOᵧ thin films are well characterized, little is known about the impact of oxygen exposure during the deposition process. Here, a combination of structural and electrical characterization is applied to investigate the influence of the oxygen and zirconium content on the crystallization process during ALD deposition in comparison to other deposition techniques. Different polarization properties are assessed which correlate to the determined phase of the film. Optimized oxygen pulse times can enable the crystallization of HfₓZr₁₋ₓOᵧ in a polar orthorhombic phase rather than a non-polar monoclinic and tetragonal phase.
|
63 |
Kombination Resistiver und Ferroelektrischer Schaltmechanismen in HfO2-basierten BauelementenMax, Benjamin 16 June 2021 (has links)
In den kommenden Jahren ist eine deutliche Erhöhung des digitalen Speicherbedarfs zu erwarten, was neue Anforderungen an künftige Speichertechnologien und –architekturen bringt. Hafniumoxid ist aktuell das Standard-Gatedielektrikum für Transistoren in der Halbleitertechnologie und wird in resistiven und ferroelektrischen Speichern eingesetzt, die für kommende Speichergenerationen geeignet sind. In dieser Arbeit wird die Kombination aus resistiven und ferroelektrischen Speichermechanismen untersucht. Zunächst konnte gezeigt werden, dass sich beide Schaltvorgänge in einer Zelle realisieren lassen. Dazu wurde eine polykristalline, ferroelektrische Hafniumoxidschicht in eine Kondensatorstruktur mit unterschiedlichen Elektroden gebracht. Der reversible resistive und ferroelektrische Schaltvorgang beruht auf einer Zurücksetz-Operation in einen sehr hochohmigen Zustand, wodurch die Oxidschicht für weiteres ferroelektrisches Schalten genutzt werden konnte. Zusätzlich wurde der Einfluss von Sauerstofffehlstellen auf die resistiven Formier- und Schreibspannungen nachgewiesen. Im zweiten Teil dieser Arbeit wurden ferroelektrische Tunnelkontakte (engl. FTJ) hergestellt und systematisch auf ihre Schalt- und Speichereigenschaften untersucht. Diese beruhen auf der Informationsspeicherung in der ferroelektrischen Hafniumzirkoniumoxid-Schicht (HZO) und auf einem resistiven Auslesemechanismus, bei dem der Tunnelstrom für den jeweiligen Polarisationszustand gemessen wird. Dieser Lesevorgang ist nichtdestruktiv. Für den quantenmechanischen Tunnelvorgang sind dünne Oxidschicht notwendig, um einen ausreichend hohen Tunnelstrom zu erreichen. HZO-basierte Schichten verlieren ihre ferroelektrischen Eigenschaften unter einer kritischen Schichtdicke, die für einen klassischen Metall-Ferroelektrikum-Metall-Tunnelkontakt zu hoch ist. Dazu wurde in dieser Arbeit der Ansatz gewählt, zusätzlich eine dielektrische Aluminiumoxid-Tunnelbarriere in die Struktur einzubringen. Dadurch können die ferroelektrische und dielektrische Schicht unabhängig voneinander optimiert werden (2-lagiger ferroelektrischer Tunnelkontakt). Es konnte gezeigt werden, dass nur in einem bestimmten Dielektrikums-Schichtdickenbereich zwischen etwa 2-2,5nm das gewünschte Tunnelverhalten der Struktur hervortritt. Beim Setzen der jeweiligen Polarisationszustände tritt in der Schaltkinetik der bekannte Zeit-Amplituden-Kompromiss auf. Dieser wurde mithilfe des nukleationslimierten Schaltmodells untersucht. Über eine geeignete Wahl von Pulsdauer und –amplitude können durch Teilpolarisation Zwischenzustände gespeichert werden. Die Zyklenfestigkeit zeigt ein stärkeres Aufwachverhalten als die reine HZO-Schicht. Es konnte gezeigt werden, dass der Auslesetunnelstroms direkt mit dem Anstieg der remanenten Polarisation korreliert und somit das Speicherfenster mit einem An/Aus-Verhältnis von 10 erst nach etwa 10^2 Schaltzyklen vollständig geöffnet ist. Die Datenhaltung zeigte nur ein marginales Speicherfenster bei Extrapolation auf 10 Jahre. Die Datenhaltung konnte durch Abscheidung von Titannitrid- und Platin-Metallelektroden mit unterschiedlichen Austrittsarbeiten stabilisiert werden. Damit ließ sich das Speicherfenster deutlich erhöhen. Die Möglichkeit, Zwischenzustände speichern und graduell einzustellen zu können, erlaubt die Nutzung der zweilagigen FTJs als künstliche Synapsen. Dazu wurde über verschiedene Pulsfolgen der veränderliche Tunnelwiderstand als synaptisches Gewicht interpretiert. Damit konnte Potenzierung- und Depressionsverhalten der künstlichen Synapse emuliert werden.:Danksagung I
Kurzzusammenfassung II
Abstract III
Symbolverzeichnis VI
Abkürzungsverzeichnis IX
1 Einführung und Motivation 1
2 Grundlagen 4
2.1 Dielektrizität und Ferroelektrizität 4
2.2 Ferroelektrizität in HfO2 9
2.3 Arten ferroelektrischer Speicher 13
2.3.1 Ferroelektrischer Kondensator 13
2.3.2 Ferroelektrischer Feldeffekttransistor 15
2.3.3 Ferroelektrischer Tunnelkontakt 16
2.4 Überblick über resistive Speicher 24
3 Experimentelle Methoden 28
3.1 Physikalische Charakterisierung 28
3.1.1 Röntgendiffraktometrie unter streifendem Einfall 28
3.1.2 Röntgenreflektometrie 28
3.1.3 Transmissionselektronenmikroskopie 29
3.2 Elektrische Untersuchungsmethoden 29
3.2.1 Elektrische Messung resistiver Schaltkurven 29
3.2.2 Dynamische Hysteresekurven und Messung der Zyklenfestigkeit 29
3.2.3 Elektrische Messung der ferroelektrischen Tunnelkontakte 30
3.3 Abscheideverfahren zur Herstellung der Kondensatorstrukturen 31
3.3.1 Reaktives Magnetronsputtern 32
3.3.2 Elektronenstrahlverdampfung und Thermisches Verdampfen 32
3.3.3 Atomlagenabscheidung 33
4 Resistives und ferroelektrisches Schalten in einer Zelle 34
4.1 Resistives Schalten in amorphem und kristallinem HfO2 34
4.2 Kombination von resistivem und ferroelektrischem Schalten in einer Struktur 38
5 Ferroelektrische Tunnelkontakte 46
5.1 Charakterisierung der ferroelektrischen Hafniumzirkoniumoxid-Schicht 46
5.2 Übersicht und Aufbau der untersuchten Proben 50
5.3 (Ferro-)Elektrische Eigenschaften und Schichtdickenoptimierung der FE/DE-FTJs 53
5.3.1 Einfluss der Al2O3-Schichtdicke 60
5.3.2 Skalierbarkeit 64
5.4 Schaltkinetik 67
5.5 Zyklenfestigkeit 78
5.6 Datenhaltung 87
5.6.1 Einfluss von Depolarisationsfeldern in zweilagigen FTJs 87
5.6.2 Optimierung durch Elektroden mit unterschiedlichen Austrittsarbeiten 93
5.7 Anwendung von FTJs als künstliche Synapse in gepulsten neuronalen Netzen 97
5.8 Vergleich, Ausblick und weiterführende Verbesserung des Bauelements 105
6 Zusammenfassung und Ausblick 109
Literaturverzeichnis XI
Curriculum Vitae XXXVIII
Publikationsliste XL
Selbstständigkeitserklärung XLIII
|
64 |
Employing Metal Iodides and Oxygen in ALD and CVD of Functional Metal OxidesSundqvist, Jonas January 2003 (has links)
<p>Many materials exhibit interesting and novel properties when prepared as thin films. Thin film metal oxides have had an impact on the technological progress of the microelectronics mainly due to their electrical and optical properties. Since the future goes towards the nanometre scale there is an increasing demand for thin film deposition processes that can produce high quality metal oxide films in this scale with high accuracy.</p><p>This thesis describes atomic layer deposition of Ta<sub>2</sub>O<sub>5</sub>, HfO<sub>2</sub> and SnO<sub>2</sub> thin films and chemical vapour deposition of SnO<sub>2</sub> thin films. The films have been deposited by employing metal iodides and oxygen as precursors. All these processes have been characterised with regards to important processing parameters. The films themselves have been characterised by standard thin film analysing techniques such as x-ray diffraction, scanning electron microscopy, atomic force microscopy and transmission electron microscopy. The chemical and physical properties have been coupled to critical deposition parameters. Furthermore, additional data in the form of electrical and gas sensing properties important to future applications in the field of microelectronics have been examined.</p><p>The results from the investigated processes have shown the power of the metal iodide based atomic layer deposition (ALD) and chemical vapour deposition (CVD) processes in producing high quality metal oxide thin films. Generally no precursor contaminations have been observed. In contrast to metal chloride based processes the metal iodide processes produces films with a higher degree of crystalline quality when it comes to phase purity, roughness and epitaxy. The use of oxygen as oxidising precursor allowed depositions at higher temperatures than normally employed in water based ALD processes and hence a higher growth rate for epitaxial growth was possible.</p>
|
65 |
Employing Metal Iodides and Oxygen in ALD and CVD of Functional Metal OxidesSundqvist, Jonas January 2003 (has links)
Many materials exhibit interesting and novel properties when prepared as thin films. Thin film metal oxides have had an impact on the technological progress of the microelectronics mainly due to their electrical and optical properties. Since the future goes towards the nanometre scale there is an increasing demand for thin film deposition processes that can produce high quality metal oxide films in this scale with high accuracy. This thesis describes atomic layer deposition of Ta2O5, HfO2 and SnO2 thin films and chemical vapour deposition of SnO2 thin films. The films have been deposited by employing metal iodides and oxygen as precursors. All these processes have been characterised with regards to important processing parameters. The films themselves have been characterised by standard thin film analysing techniques such as x-ray diffraction, scanning electron microscopy, atomic force microscopy and transmission electron microscopy. The chemical and physical properties have been coupled to critical deposition parameters. Furthermore, additional data in the form of electrical and gas sensing properties important to future applications in the field of microelectronics have been examined. The results from the investigated processes have shown the power of the metal iodide based atomic layer deposition (ALD) and chemical vapour deposition (CVD) processes in producing high quality metal oxide thin films. Generally no precursor contaminations have been observed. In contrast to metal chloride based processes the metal iodide processes produces films with a higher degree of crystalline quality when it comes to phase purity, roughness and epitaxy. The use of oxygen as oxidising precursor allowed depositions at higher temperatures than normally employed in water based ALD processes and hence a higher growth rate for epitaxial growth was possible.
|
66 |
A study of HfO₂-based MOSCAPs and MOSFETs on III-V substrates with a thin germanium interfacial passivation layerKim, Hyoung-sub, 1966- 18 September 2012 (has links)
Since metal-oxide-semiconductor (MOS) devices have been adopted into integrated circuits, the endless demands for higher performance and lower power consumption have been a primary challenge and a technology-driver in the semiconductor electronics. The invention of complementary MOS (CMOS) technology in the 1980s, and the introduction of voltage and physical dimension scaling in the 1990s would be good examples to keep up with the everlasting demands. In the 2000s, technology continuously evolves and seeks for more power efficiency ways such as high-k dielectrics, metal gate electrodes, strained substrates, and high mobility channel materials. As a gate dielectric, silicon dioxide (SiO₂), most widely used in CMOS integrated circuits, has many prominent advantages, including a high quality interface (e.g. Dit ~ low 1010 cm-2eV-1), a good thermal stability in contact with silicon (Si), a large energy bandgap and the large energy band offsets in reference to Si, and a high quality dielectric itself. As the thickness of SiO₂ keeps shrinking, however, SiO₂ is facing its physical limitations from the viewpoint of gate dielectric leakage currents and reliability requirements. High-k dielectric materials have attracted extensive attention in the last decade due to their great potential for maintaining further down-scaling in equivalent oxide thickness (EOT) and a low dielectric leakage current. HfO₂ has been considered as one of the most promising candidates because of a high dielectric constant (k ~ 20-25), a large energy band gap (~ 6 eV) and the large band offsets (> 1.5 eV), and a good thermal stability. To enhance carrier mobility, strained substrates and high mobility channel materials have attracted a great deal of attention, thus III-V compound semiconductor substrates have emerged as one of possible candidates, in spite of several technical barriers, being believed as barriers so far. The absence of high quality and thermodynamically stable native oxide, like SiO₂ on Si, has been one such hurdle to implement MOS systems on III-V substrates. However, recently, there have been a number of remarkable improvements on MOS applications on them, inspiring more vigorous research activities. In this research, HfO2-based MOS capacitors and metal-oxidesemiconductor field effect transistors (MOSFETs) with a thin germanium (Ge) interfacial passivation layer (IPL) on III-V compound substrates were investigated. It was found that a thin Ge IPL could effectively passivate the surface of III-V substrate, consequently providing a high quality interface and an excellent gate oxide scalability. N-channel MOSFETs on GaAs, InGaAs, and InP substrates were successfully demonstrated and a minimum EOT of ~ 9 Å from MOS capacitors was achieved. This research has begun with GaAs substrate, and then expanded to InGaAs, InP, InAs, and InSb substrates, which eventually helped to understand the role of a Ge IPL and to guide future research direction. Overall, MOS devices on III-V substrates with an HfO₂ gate dielectric and a Ge IPL have demonstrated feasibility and potential for further investigations. / text
|
67 |
Embedding hafnium oxide based FeFETs in the memory landscapeSlesazeck, Stefan, Schroeder, Uwe, Mikolajick, Thomas 09 December 2021 (has links)
During the last decade ferroelectrics based on doped hafnium oxide emerged as promising candidates for realization of ultra-low-power non-volatile memories. Two spontaneous polarization states occurring in the material that can be altered by applying electrical fields rather than forcing a current through and the materials compatibility to CMOS processing are the main benefits setting the concept apart from other emerging memories. 1T1C ferroelectric random access memories (FeRAM) as well as 1T FeFET concepts are under investigation. In this article the application of hafnium based ferroelectric memories in different flavours and their ranking in the memory landscape are discussed.
|
68 |
Pyroelectricity of silicon-doped hafnium oxide thin filmsJachalke, Sven, Schenk, Tony, Park, Min Hyuk, Schroeder, Uwe, Mikolajick, Thomas, Stöcker, Hartmut, Mehner, Erik, Meyer, Dirk C. 27 April 2022 (has links)
Ferroelectricity in hafnium oxide thin films is known to be induced by various doping elements and in solid-solution with zirconia. While a wealth of studies is focused on their basic ferroelectric properties and memory applications, thorough studies of the related pyroelectric properties and their application potential are only rarely found. This work investigates the impact of Si doping on the phase composition and ferro- as well as pyroelectric properties of thin film capacitors. Dynamic hysteresis measurements and the field-free Sharp-Garn method were used to correlate the reported orthorhombic phase fractions with the remanent polarization and pyroelectric coefficient. Maximum values of 8.21 µC cm−2 and −46.2 µC K−1 m−2 for remanent polarization and pyroelectric coefficient were found for a Si content of 2.0 at%, respectively. Moreover, temperature-dependent measurements reveal nearly constant values for the pyroelectric coefficient and remanent polarization over the temperature range of 0 °C to 170 °C, which make the material a promising candidate for IR sensor and energy conversion applications beyond the commonly discussed use in memory applications.
|
69 |
Novel Fluorite Structure Ferroelectric and Antiferroelectric Hafnium Oxide-based Nonvolatile MemoriesAli, Tarek 26 April 2022 (has links)
The ferroelectricity in fluorite structure based hafnium oxide (HfO2) material expanded the horizon for realizing nonvolatile ferroelectric memory concepts. Due to the excellent HfO2 ferroelectric film properties, CMOS compatibility, and scalability; the material is foreseen as a replacement of the lead based ferroelectric materials with a big game changing potential for the emerging ferroelectric memories. In this thesis, the development of novel memory concepts based on the ferroelectric or antiferroelectric HfO2 material is reported. The ferroelectric field effect transistor (FeFET) memory concept offers a low power, high-speed, nonvolatile, and one cell memory solution ideal for embedded memory realization. As an emerging concept based on a novel ferroelectric material, the FeFET is challenged with key performance aspects intrinsic to the underlying physics of the device. A central part of this thesis is the development of FeFET through material and gate stack engineering, in turn leading to innovative novel device concepts. The conceptual innovation, process development, and electrical assessment are explored for an ferroelectric or antiferroelectric HfO2 based nonvolatile memories with focus on the underlying device physics. The impact of the ferroelectric material on the FeFET physics is explored via the screening of different HfO2 based ferroelectric materials, thicknesses, and the film doping concentration. The impact of material interfaces and substrate doping conditions are explored on the stack engineering level to achieve a low power and reliable FeFET. The material optimization leads to the concept of ferroelectric lamination, i.e. a dielectric interlayer between multi ferroelectric ones, to achieve a novel multilevel data storage in FeFET at reduced device variability. Toward a low power FeFET, the stack structure tuning and dual ferroelectric layer integration are explored through an MFM and MFIS integration in a single novel FeFET stack. The charge trapping effect during the FeFET switching captures the dynamics of the hysteresis polarization switching inside the stack with direct impact on the interfacial layer field. Even though manifesting as a clear drawback in FeFET operation, it can be utilized in Flash, leading to a novel hybrid low power and high-speed antiferroelectric based charge trap concept. Furthermore, the FeFET reliability is studied covering the role of operating temperature and the ferroelectric wakeup phenomenon observed in the FeFET. The temperature modulated operation, role of the high-temperature pyroelectric effect, and the temperature induced endurance and retention reliability are studied.:Table of Contents
Abstract
Table of Contents
1. Introduction
2. Fundamentals
2.1. Basics of Ferroelectricity
2.2. The FeFET Operation Principle and Gate Stack Theory
2.3. Structure and Outline of the PhD Thesis
3. The Emerging Memory Optimization Cycle: From Conceptual Design to Fabrication
3.1. The FeFET Conceptual Design and Layout Implementation
3.2. Gate First FeFET Fabrication: Material and Gate Stack Optimization
3.3. Novel Gate First based Memory Concepts: Device Integration and Stack Optimization
3.4. Device Characterization: Electrical Testing Schemes
4. The Emerging FeFET Memory: Material and Gate Stack Optimization
4.1. Material Aspect of FeFET Optimization: Role of the FE Material Properties
4.2. The Stack Aspect of FeFET Optimization: Role of the Interface Layer Properties
4.3. The Stack Aspect of FeFET Optimization: Role of the Substrate Implant Doping
4.4. Summary
5. A Novel Multilevel Cell FeFET Memory: Laminated HSO and HZO Ferroelectrics
5.1. The Laminate MFM and Stack Characteristics
5.2. The Laminate based FeFET Memory Switching
5.3. The Laminate FeFET Multilevel Coding Operation (1 bit, 2 bit, 3 bit/cell)
5.4. The Maximum Laminate FeFET MW Dependence on FE Stack Thickness
5.5. The Role of Wakeup and Charge Trapping
5.6. The Laminate MLC FeFET Area Dependence
5.7. The Laminate MLC Retention and Endurance
5.8. Impact of Pass Voltage Disturb on Laminate based NAND Array Operation
5.9. The Laminate FeFET based Synaptic Device
5.10. Summary
6. A Novel Ferroelectric MFMFIS FeFET: Toward Low Power and High-Speed NVM
6.1. The MFMFIS FeFET P-E and FET Characteristics
6.2. The MFMFIS based Memory Characteristics
6.3. The Impact of MFMFIS Stack Structure Tuning
6.4. The Maximum MFMFIS FeFET Memory Window
6.5. The Role of Device Scalability and Variability
6.6. The MFMFIS Area Tuning for Low Power Operation
6.7. The MFMFIS based FeFET Reliability
6.8. The Synaptic MFMFIS based FeFET
6.9. Summary
7. A Novel Hybrid Low Power and High-Speed Antiferroelectric Boosted Charge Trap Memory
7.1. The Hybrid Charge Trap Memory Switching Characteristics
7.2. The Role of Polarization Switching on Optimal Write Conditions
7.3. The Impact of FE/AFE Properties on the Charge Trap Maximum Memory Window
7.4. The Hybrid AFE Charge Trap Multi-level Coding and Array Operation
7.5. The Global Variability and Area Dependence of the Charge Trap Memory Window
7.6. The AFE Charge Trap Reliability
7.7. The Hybrid AFE Charge Trap based Synapse
7.8. Summary
8. The Emerging FeFET Reliability: Role of Operating Temperature and Wakeup Effect
8.1. The FeFET Temperature Reliability: A Temperature Modulated Operation
8.2. The FeFET Temperature Reliability: Role of the Pyroelectric Effect
8.3. The FeFET Temperature Reliability: Endurance and Retention
8.4. The Impact of Ferroelectric Wakeup on the FeFET Memory Reliability
8.5. Summary
9. Closure: What this Thesis has Solved?
9.1. How material selection/development influence the FeFET?
9.2. Why the FeFET Still Operates at High Write Conditions?
9.3. Why the FeFET Endurance is still a Challenge?
9.4. Can the FeFET become Multi-bit Storage Memory?
9.5. How the Scalability Determine FeFET Chances?
10. Summary
11. Bibliography
List of symbols and abbreviations
List of Publications
Acknowledgment
Erklärung
|
70 |
Analysis of Performance Instabilities of Hafnia-Based Ferroelectrics Using Modulus Spectroscopy and Thermally Stimulated Depolarization CurrentsFengler, Franz P. G., Nigon, Robin, Muralt, Paul, Grimley, Everett D., Sang, Xiahan, Sessi, Violetta, Hentschel, Rico, LeBeau, James M., Mikolajick, Thomas, Schroeder, Uwe 24 August 2022 (has links)
The discovery of the ferroelectric orthorhombic phase in doped hafnia films has sparked immense research efforts. Presently, a major obstacle for hafnia's use in high-endurance memory applications like nonvolatile random-access memories is its unstable ferroelectric response during field cycling. Different mechanisms are proposed to explain this instability including field-induced phase change, electron trapping, and oxygen vacancy diffusion. However, none of these is able to fully explain the complete behavior and interdependencies of these phenomena. Up to now, no complete root cause for fatigue, wake-up, and imprint effects is presented. In this study, the first evidence for the presence of singly and doubly positively charged oxygen vacancies in hafnia–zirconia films using thermally stimulated currents and impedance spectroscopy is presented. Moreover, it is shown that interaction of these defects with electrons at the interfaces to the electrodes may cause the observed instability of the ferroelectric performance.
|
Page generated in 0.0453 seconds