41 |
Comportement en temps long des solutions de quelques équations de Hamilton-Jacobi du premier et second ordre, locales et non-locales, dans des cas non-périodiques / Long time behavior of solutions of some first and second order, local and nonlocal Hamilton-Jacobi equations in non-periodic settingsNguyen, Thi Tuyen 01 December 2016 (has links)
La motivation principale de cette thèse est l'étude du comportement en temps grand des solutions non-bornées d'équations de Hamilton-Jacobi visqueuses dans RN en présence d'un terme d'Ornstein-Uhlenbeck. Nous considérons la même question dans le cas d'une équation de Hamilton-Jacobi du premier ordre. Dans le premier cas, qui constitue le cœur de la thèse, nous généralisons les résultats de Fujita, Ishii et Loreti (2006) dans plusieurs directions. La première est de considérer des opérateurs de diffusion plus généraux en remplaçant le Laplacien par une matrice de diffusion quelconque. Nous considérons ensuite des opérateurs non-locaux intégro-différentiels de type Laplacien fractionnaire. Le second type d'extension concerne le Hamiltonien qui peut dépendre de x et est seulement supposé sous-linéaire par rapport au gradient. / The main aim of this thesis is to study large time behavior of unbounded solutions of viscous Hamilton-Jacobi equations in RN in presence of an Ornstein-Uhlenbeck drift. We also consider the same issue for a first order Hamilton-Jacobi equation. In the first case, which is the core of the thesis, we generalize the results obtained by Fujita, Ishii and Loreti (2006) in several directions. The first one is to consider more general operators. We first replace the Laplacian by a general diffusion matrix and then consider a non-local integro-differential operator of fractional Laplacian type. The second kind of extension is to deal with more general Hamiltonians which are merely sublinear.
|
42 |
Homogénéisation stochastique de quelques problèmes de propagations d'interfaces / Stochastic homogenization of some front propagation problemsHajej, Ahmed 01 July 2016 (has links)
Dans ce travail, on étudie l'homogénéisation de quelques problèmes de propagations de fronts dans des milieux stationnaires et ergodiques. Dans la première partie, on étudie l'homogénéisation stochastique de quelques problèmes de propagations de fronts non-locaux. En particulier, on donne une version non-locale de la méthode de la fonction test perturbée d'Evans. La deuxième partie est consacrée à l'approximation numérique du Hamiltonien effectif qui découle de l'homogénéisation stochastique des équations de Hamilton-Jacobi. On établit des estimations d'erreurs entre les solutions numériques et l'Hamiltonien effectif. Dans la troisième partie, on s'intéresse à l'homogénéisation stochastique de problèmes de propagations de fronts qui évoluent dans la direction normale avec une vitesse qui peut être non bornée. On montre des résultats d'homogénéisation dans le cas des milieux i.i.d. / In this work, we study the homogenization of some front propagation problems in stationary ergodic media. In the first part, we study the stochastic homogenization of non-local front propagation problems. In particular, we give a non-local variation of the perturbed test function method of Evans. The second part is devoted to numerical approximations of the effective Hamiltonian arising in stochastic homogenization of Hamilton-Jacobi equations. We establish error estimates between numerical solutions and the effective Hamiltonian. In the third part, we are interested in the stochastic homogenization of front propagation problems moving in the normal direction with possible unbounded velocity. Assuming that the media satisfies a finite range of dependence condition, we prove homogenization results.
|
43 |
Numerical methods for the solution of the HJB equations arising in European and American option pricing with proportional transaction costsLi, Wen January 2010 (has links)
This thesis is concerned with the investigation of numerical methods for the solution of the Hamilton-Jacobi-Bellman (HJB) equations arising in European and American option pricing with proportional transaction costs. We first consider the problem of computing reservation purchase and write prices of a European option in the model proposed by Davis, Panas and Zariphopoulou [19]. It has been shown [19] that computing the reservation purchase and write prices of a European option involves solving three different fully nonlinear HJB equations. In this thesis, we propose a penalty approach combined with a finite difference scheme to solve the HJB equations. We first approximate each of the HJB equations by a quasi-linear second order partial differential equation containing two linear penalty terms with penalty parameters. We then develop a numerical scheme based on the finite differencing in both space and time for solving the penalized equation. We prove that there exists a unique viscosity solution to the penalized equation and the viscosity solution to the penalized equation converges to that of the original HJB equation as the penalty parameters tend to infinity. We also prove that the solution of the finite difference scheme converges to the viscosity solution of the penalized equation. Numerical results are given to demonstrate the effectiveness of the proposed method. We extend the penalty approach combined with a finite difference scheme to the HJB equations in the American option pricing model proposed by Davis and Zarphopoulou [20]. Numerical experiments are presented to illustrate the theoretical findings.
|
Page generated in 0.0951 seconds