• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 9
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 28
  • 28
  • 10
  • 8
  • 7
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Thermal models and energy saving strategies for rotational molding operation

Ghosh, Kalyanjit. January 2004 (has links) (PDF)
Thesis (M.S.)--Mechanical Engineering, Georgia Institute of Technology, 2005. Directed by Jonathan Colton. / Dr. Jonathan Colton, Committee Member ; Dr. Shelson Jeter, Committee Member ; Dr. Srinivas Garimella, Committee Chair. Includes bibliographical references.
2

Energy loss characterization of the P3 MEMS heat engine

McNeil, Kirsten Elizabeth, January 2006 (has links) (PDF)
Thesis (M.S. in mechanical engineering)--Washington State University, August 2006. / Includes bibliographical references (p. 77-81).
3

Análisis exergético de sistemas de almacenamiento de energía eléctrica a gran escala mediante bombas de calor de alta temperatura, utilizando CO2 como fluido de trabajo

Álvarez Álvarez, Sebastián Ignacio January 2018 (has links)
Memoria para optar al título de Ingeniero Civil Mecánico / De acuerdo a la necesidad de mitigar la variabilidad de producción de energía eléctrica mediante recursos renovables de naturaleza variable (energía solar y eólica), se analiza la factibilidad técnica de utilizar un sistema de almacenamiento de energía mediante bombeo de calor (Pumped Heat Energy Storage o PHES) utilizando CO2 como fluido de trabajo, lo que permite alcanzar altas eficiencias con bajo riesgo asociado al ciclo y un menor potencial de contaminación ambiental en comparación a otros fluidos de trabajo. El funcionamiento de un sistema PHES, consiste en el uso de bombas de calor para almacenar energía, en forma de calor (normalmente con sales fundidas tipo sal solar), a partir de superávit eléctrico, o bien en condiciones de bajo costo marginal en la red (alta generación de renovables - eólicas o fotovoltaicas). El calor almacenado es transformado nuevamente en energía eléctrica a través de un ciclo de potencia apropiado. Se establecen 6 distintas posibles configuraciones con distintos grados de viabilidad de acuerdo a tres factores: Las ventajas de utilizar el mismo fluido de trabajo en carga y descarga (Ciclo de descarga tipo Rankine de vapor o Brayton de CO2), la limitante tecnológica de la no existencia en el mercado de una turbina de CO2 apropiada (tipo de expansor en la bomba de calor: Turbina o válvula de expansión) y la limitante tecnológica-económica de los compresores de CO2 comerciales, los cuales no alcanzan temperaturas ideales para el uso de sales fundidas como medio de almacenamiento de calor (utilización o no de calentador eléctrico como complemento del compresor en la bomba de calor). Además se explora la posibilidad de utilizar 5 tipos distintos de sales fundidas, algunas de las cuales presentan potencial de ser producidas localmente. Se realizan modelos computacionales de cada configuración y se comparan eficiencias Round-Trip, eficiencia exergética de la bomba de calor y uso de sales fundidas principalmente. Se descartan combinaciones de sales fundidas con configuraciones que resultan inviables y se obtienen eficiencias Round-Trip entre 40 y 63% para aquellas viables, siendo la configuración con mayor eficiencia la con bomba de calor sin modificaciones y ciclo Rankine estándar (no considera restricciones), seguida por la configuración equivalente pero con calentador eléctrico (eficiencias 3-5% menores considerando restricción del compresor). Luego, las más prometedoras son aquellas con descarga Brayton, con eficiencias 4-7% inferiores que las con ciclo Rankine y presentando la posibilidad de utilizar los mismos equipos tanto en carga como descarga (ciclo Brayton reversible), aunque con mayores presiones de trabajo (asociado a mayores costos). Se considera necesario un estudio económico con mayor profundidad para determinar la conveniencia o no de este tipo de ciclos, así como también cuantificar las ventajas y desventaja de cada uno de los casos estudiados. Por último, de las 5 sales evaluadas, se detecta gran potencial en sales de litio (eficiencias 2-5% menores que sal solar con un requerimiento de flujo aproximadamente 40% menor) que podrían ser producidas en Chile dada la disponibilidad de materia prima.
4

SIMULTANEOUS CHARGING AND DISCHARGING OF A LATENT HEAT ENERGY STORAGE SYSTEM FOR USE WITH SOLAR DOMESTIC HOT WATER

Murray, Robynne 26 July 2012 (has links)
Sensible energy storage for solar domestic hot water (SDHW) systems is space consuming and heavy. Latent heat energy storage systems (LHESSs) offer a solution to this problem. However, the functionality of a LHESS during simultaneous charging/discharging, an operating mode encountered when used with a SDHW, had not been studied experimentally. A small scale vertical cylindrical LHESS, with dodecanoic acid as the phase change material (PCM), was studied during separate and simultaneous charging/discharging. Natural convection was found to have a strong influence during melting, but not during solidification. During simultaneous operation heat transfer was limited by the high thermal resistance of the solid PCM. However, when the PCM was melted, direct heat transfer occurred between the hot and cold heat transfer fluids, indicating the significance of the PCM phase on heat transfer in the system. The results of this research will lead to more optimally designed LHESS for use with SDHW. ?
5

NUMERICAL STUDY OF THE EFFECTS OF FINS AND THERMAL FLUID VELOCITIES ON THE STORAGE CHARACTERISTICS OF A CYLINDRICAL LATENT HEAT ENERGY STORAGE SYSTEM

Ogoh, Wilson 27 July 2010 (has links)
This thesis work presents a numerical study of the effects of fins and thermal fluid velocities on the storage characteristics of a cylindrical latent heat energy storage system (LHESS). The work consists of two main components: 1. The development of a numerical method to study and solve the phase change heat transfer problems encountered in a LHESS during charging of the system, which results in melting of the phase change material (PCM). The numerical model is based on the finite element method. The commercial software COMSOL Multiphysics was used to implement it. The effective heat capacity method was applied in order to account for the large amount of latent energy stored during melting of a PCM, and the moving interface between the solid and liquid phases. The fluid flow, heat transfer and phase change processes were all validated using known analytical solutions or correlations. 2. Due to the low thermal conductivity of PCMs, the heat transfer characteristics of an enhanced LHESS was studied numerically. The effects of fins and the thermal fluid velocity on the melting rate of the PCM in the LHESS were analyzed. Results obtained for configurations having between 0 and 27 fins show that the heat transfer rate increases with addition of fins and thermal fluid velocity. The effect of the HTF velocity was observed to be small with few fin configurations since the thermal resistance offered by the LHESS system, mostly PCM, is vastly more important under these conditions; while its effect becomes more pronounced with addition of fins, since the overall thermal resistance decreases greatly with the addition of fins. The total energy stored after 12 hours for 0 and 27 fins configurations range between 3.6 MJ and 39.7 MJ for a thermal fluid velocity of 0.05 m/s and between 3.7 MJ and 57 MJ for a thermal fluid velocity of 0.5 m/s. The highest system efficiencies for the 0.05 m/s and 0.5 m/s, obtained with 27 fins configuration are 68.9% and 97.9% respectively.
6

PHASE CHANGE BEHAVIOUR OF LAURIC ACID IN A HORIZONTAL CYLINDRICAL LATENT HEAT ENERGY STORAGE SYSTEM

Liu, Chang 13 August 2012 (has links)
This work presents an experimental and numerical study of phase change behaviour in a horizontal cylindrical latent heat energy storage system (LHESS). Fins with two orientations, straight fins and angled fins, are added into the PCM to enhance heat transfer. The PCM used in this study is lauric acid which has desirable thermal properties for LHESS. The experimental work concentrates on studying the heat transfer mechanism during phase change, impacts of the HTF inlet temperature and HTF flow rates. Moreover, heat transfer enhancement effectiveness of straight fins and angles fins is compared. Numerical model is simulated using COMSOL Multiphysics software package. It is observed that conduction is the dominant heat transfer mechanism during the initial stage of charging, and natural convection plays a more important role afterwards. Conduction plays a major role during solidification. Complete melting time is affected by the HTF inlet temperature and HTF flow rates.
7

Time-fractional analysis of flow patterns during refrigerant condensation

Van Rooyen, Eugene. January 2007 (has links)
Thesis (M. Eng.(Mechanical and Aeronautical Engineering))--Universiteit van Pretoria, 2007. / Abstract in English. Includes bibliographical references.
8

Advanced Thermal Energy Storage Heat Transfer Study with Use of Comsol and Matlab

Johansson, Petter January 2011 (has links)
The interest in storing latent energy in phase change materials has risen over the last years as the need grows for more energy efficient systems. By storing energy, free chilling and heat can be saved for later use during high load hours. Thus the gap between supply and load can be overcome. It is an efficient way to provide both cooling and heating to buildings using phase change material (PCM) as they take up much less volume compared to a corresponding water-cistern with the same amount of stored energy. Low thermal conductivity of most of the PCMs can be compensated with advanced heat transfer design, however impact of different heat transfer mechanisms is not explicitly studied. In this work, a heat transfer study has been made on a finned cylindrical PCM heat exchanger with focus on determining the heat transfer effect of convection in non-gelled PCMs and the different ways to model such a system in a two dimensional axis-symmetric plane. The first and simpler numerical model of the two was built using Matlab, where the convection effect was simulated using an enhanced-conduction factor based on empirical equations. The other model was built in a CFD environment and simulates the convection with more complexity and more realistic behavior. The results show that the convection may contribute to 65% of the total heat transfer in non-gelled PCMs at a certain time and that using empirical equations for simulating convection is a fast and easy way to estimate the heat transfer, though not a recommended method for high accuracy results. The study also showed that because of the gravity-induced convection, the angle of the cylindrical finned heat exchanger affects the heat transfer and that more fins, while increasing the overall heat transfer rate, inhibits the effect of convection in a vertically positioned heat exchanger.
9

Water born cooling of closed greenhouses : An enclosed vertical water curtain cooling system

Kamal, Ahmad January 2022 (has links)
The greenhouses play a key role in food sustainable production, the purpose of the greenhouses is to make an artificial suitable environment to grow different kinds of plants. The cost of energy used in the greenhouses to ensure the optimum temperature, humidity, and CO2 concentration, makes up a large part of the final cost of food. Due to global warming, the successive energy crises, and the food crises, the need to make the greenhouses more energy efficient and to utilize renewable energy resources is rapidly increasing. The enclosed water curtain cooling system meets the special requirement of the greenhouse cooling system, and it has potential energy savings when it is integrated with other systems such as heat pumps, underground water sources, and surplus heat energy recovery. This system involves two special nylon foils, and a thin layer of water flows between the two foils, the two foils will be stuck to eachother by the cohesive force of the water-detergent mixture, the detergent was added to decrease the water surface tension and ensure the even distribution of the water-detergent mixture over the nylon foils. In this study, an experimental model of the enclosed water curtain was made and two sets of tests were conducted, the first set was at room temperature around 20°C, and the second test was at room temperature around 25.7 °C with an electrical heater, each set contains three tests to measure the cooling capacity of the curtain, and each test takes 2 minutes, the curtain dimensions were height and width of 1.04 m and 1.20 m respectively. By measuring the difference between the average inlet and outlet temperature of the water-detergent mixture before and after the curtain, and the mixture mass flow rate during the test period, the cooling capacityof the curtain was calculated using the energy balance equation.It was found that the curtain cooling capacity increases with the increase of ambient temperature, The large heat transfer area of the curtain which allows using higher water temperature for cooling, and the useful features of the water membrane like the high absorption of the wavelength of infrared and the high transparency of the wavelength of visible light, make this system meets the special requirements of the greenhouses cooling system. However, to be able to apply this system in real-life, the design of the curtain should be improved, and suitable materials should be chosen to make it more reliable. Also, All tests in this study were conducted in the workshop in the absence of solar radiation, therefore, the actual performance of the curtain needs to be evaluated with the presence of solar radiation, to be able to study the effects of the direct and diffuse solar radiation with various spectrum range.
10

Medienos džiovyklos energetinio efektyvumo tyrimas / Assessing Energetic Efficiency of Wood Drying Machine

Giraitis, Ričardas 28 May 2012 (has links)
Tyrimo tikslas – ištirti medienos džiovyklos, kūrenamos biokuru, energijos sąnaudas ir energinį efektyvumą. Tyrimo uždaviniai – išanalizuoti biokuro katilinės technologinį procesą, nustatyti biokuro charakteristikas ir biokuro poreikius medienos džiovinimui, sudaryti džiovinamos medienos elektros ir šiluminės energijos sąnaudų skaičiavimo metodiką. Eksperimentinio tyrimo metu nustatytas biokuro (pjuvenų) šilumingumas (9,3 MJ/kg) ir jo drėgnis (47,0 %). Nustatytos katilinės elektros įrenginių ir medienos džiovyklos suminės energijos sąnaudos, kurios siekia 686 MJ/m3 išdžiūvusios medienos. / The aim – to investigate wood drying, burning biofuels, energy consumption and energy efficiency. Objectives of the study – to analyse the biofuel boiler process that determine the characteristics of biofuels and biofuel needs of timber drying, consist of dried wood of electrical and thermal energy cost calculation methodology. Results of experimental investigation shows that calorific value of biofuel (saw dust) is 9,3 MJ/kg and humidity – 47,0 %. The total energy consumption of electrical installations and wood drying machine has been determined, which shows the total energy input of 686 MJ/m3 dried wood.

Page generated in 0.0474 seconds