• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 215
  • 129
  • 17
  • 13
  • 13
  • 12
  • 12
  • 12
  • 12
  • 11
  • 11
  • 8
  • 4
  • 4
  • 4
  • Tagged with
  • 488
  • 488
  • 211
  • 198
  • 112
  • 100
  • 99
  • 62
  • 62
  • 58
  • 57
  • 46
  • 46
  • 46
  • 40
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Shrinkage and strength characterizations of concrete containing supplementary cementing materials

Chatterjee, Aniruddha. January 1900 (has links)
Thesis (M.S.)--West Virginia University, 2004. / Title from document title page. Document formatted into pages; contains xi, 133 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 112-118).
2

Development of high strength concrete for Hong Kong and investigation of their mechanical properties /

Wong, Kong-yeung. January 1996 (has links)
Thesis (M. Phil.)--University of Hong Kong, 1996. / Includes bibliographical references (leaf 124-130).
3

Exploratory study on high performance concrete for bridge decks in West Virginia

Zhang, Wenbo, January 2001 (has links)
Thesis (M.S.)--West Virginia University, 2001. / Title from document title page. Document formatted into pages; contains x, 92 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 79-83).
4

Effects of limestone fines on performance of concrete

Mckinley, Max., 麥兒. January 2013 (has links)
The production of high-performance concrete having all-rounded high performance has been promoted for the last few decades. Meanwhile, environmental concerns have quested for minimizing cement consumption to reduce carbon footprint. However, contradictory requirements are often imposed on the mix parameters in order to satisfy all the required performance attributes and environmental limitations. The addition of inert fillers such as limestone fines (LF) is a promising way to overcome these difficulties. In this thesis, the packing density and overall performance of mortar and concrete containing different amounts of LF are investigated. The test results revealed that blending of fine aggregate with LF or with both LF and cement could significantly increase the packing density because the LF and cement particles are much smaller than the aggregate particles and are thus able to fill into the voids between the aggregate particles. However, LF with similar fineness as cement has no filling effect for increasing the packing density when added to cement to a mortar mix in which the powder content is already enough to fill the voids between aggregate particles. Its filling effect is contributed mainly by filling into the paste to increase the paste volume. In fact, the addition of LF to mortar would slightly decrease the packing density, significantly decrease the water film thickness (WFT) and significantly increase the paste film thickness (PFT). The actual effects of LF volume on the packing density, WFT and PFT are dependent on the cement paste volume. In-depth analysis of the test results showed that the apparently complicated effects of the LF volume are caused by the corresponding changes in the WFT and PFT of the mortar. The overall effects of LF are dependent on the net outcome of the decrease in WFT and the increase in PFT due to the addition of LF. The addition of LF would increase the flow spread when the WFT is relatively large as the decrease in WFT has smaller effect than the increase in PFT, increase the cohesiveness when the LF volume is relatively small as the decrease in WFT has greater effect and increase the early strength provided the WFT would not become too small. However, the addition of LF would always decrease the flow rate because the decrease in WFT always has greater effect than the increase in PFT. Finally, the possible use of LF as cement paste replacement to reduce cement paste volume is studied. From the correlation of the ultimate shrinkage strain to the cement paste volume and W/C ratio, and to the concrete strength and cement paste volume, it may be concluded that cement paste replacement by the addition of LF would reduce the shrinkage of concrete by both decreasing the cement paste volume and increasing the concrete strength. Moreover, since the reduction in cement paste volume would allow less cement to be used, this would also lead to the production of concrete more ecological. More research on this possible usage of various inert fillers with different fineness is recommended. / published_or_final_version / Civil Engineering / Master / Master of Philosophy
5

Durability studies of high performance concrete used for bridge decks

Fan, Dayong. January 2005 (has links)
Thesis (M.S.)--West Virginia University, 2005. / Title from document title page. Document formatted into pages; contains xi, 79, [30] p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 75-79).
6

A comparative study of shrinkage and cracking of high performance concrete mixtures for bridge decks

Morris, Jennifer January 2002 (has links)
Thesis (M.S.)--West Virginia University, 2002. / Title from document title page. Document formatted into pages; contains x, 177 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 134-141).
7

Effect of microstructure on static and dynamic mechanical properties of high strength steels

Qu, Jinbo, 1971- January 2007 (has links)
The high speed deformation behavior of a commercially available dual phase (DP) steel was studied by means of split Hopkinson bar apparatus in shear punch (25m/s) and tension (1000s-1) modes with an emphasis on the influence of microstructure. The cold rolled sheet material was subjected to a variety of heat treatment conditions to produce several different microstructures, namely ferrite plus pearlite, ferrite plus bainite and/or acicular ferrite, ferrite plus bainite and martensite, and ferrite plus different fractions of martensite. Static properties (0.01mm/s for shear punch and 0.001s -1 for tension) of all the microstructures were also measured by an MTS hydraulic machine and compared to the dynamic properties. The effects of low temperature tempering and bake hardening were investigated for some ferrite plus martensite microstructures. In addition, two other materials, composition designed as high strength low alloy (HSLA) steel and transformation induced plasticity (TRIP) steel, were heat treated and tested to study the effect of alloy chemistry on the microstructure and property relationship. / A strong effect of microstructure on both static and dynamic properties and on the relationship between static and dynamic properties was observed. According to the variation of dynamic factor with static strength, three groups of microstructures with three distinct behaviors were identified, i.e. classic dual phase (ferrite plus less than 50% martensite), martensite-matrix dual phase (ferrite plus more than 50% martensite), and non-dual phase (ferrite plus non-martensite). Under the same static strength level, the dual phase microstructure was found to absorb more dynamic energy than other microstructures. It was also observed that the general dependence of microstructure on static and dynamic property relationship was not strongly influenced by chemical composition, except the ferrite plus martensite microstructures generated by the TRIP chemistry, which exhibited much better dynamic factor values. This may suggest that solid solution strengthening should be more utilized in the design of crashworthy dual phase steels.
8

Effect of microstructure on static and dynamic mechanical properties of high strength steels

Qu, Jinbo, 1971- January 2007 (has links)
No description available.
9

Seismic design recommendations for high-strength concrete beam-to-column connections.

Alameddine, Fadel F. January 1990 (has links)
The present recommendations of the ACI-ASCE Committee 352 for the design of ductile moment resistant beam to column connections limit the joint shear stress to γ√f'(c), where the factor γ is a function of the joint geometric classification and the loading condition. The value of compressive strength f'(c) used in the above expression should not exceed 6000 psi. This limitation causes considerable difficulty in the design of high-strength concrete frames. An experimental study of twelve large-scale exterior beam to column subassemblies was completed at The University of Arizona. The specimens were subjected to cyclic inelastic loading. The variables studied were the concrete compressive strength (8.1, 10.7, and 13.6 ksi), the joint shear stress (1100 and 1400 psi), and the degree of joint confinement provided in the form of closed ties. Although high-strength concrete is more brittle than normal-strength concrete, the study showed that frames constructed of high-strength concrete can perform satisfactorily in earthquakes zones when attention is given to proper detailing of joints. The flexural strength ratio, degree of joint confinement, development length of bars, and joint shear stress are all very important factors to be considered in the design process. The maximum permissible joint shear stress suggested by ACI-ASCE Committee 352 was modified for frames constructed with high-strength concrete. The proposed joint shear stress drawn from test results does not affect the factor γ which depends on the joint type and its geometric classification. Therefore, in the absence of any further data about interior joints, the proposed joint shear limit for high-strength concrete can be used for all types and geometric classifications of joints. Furthermore, new requirements for joint confinement were presented to ensure ductile behavior of frames. It is important to note that current Recommendations for joint confinement, which were developed for normal-strength concrete, cannot be satisfied for high-strength concrete frames. The hysteresis response of specimens tested and other normal-strength concrete specimens tested by different investigators were compared in terms of their energy absorption capacity. This comparison was essential to alleviate concern about the lack of ductility of high-strength concrete. Favorable results were obtained. This research is important for practitioners to gain more confidence using high-strength concrete for structural design applications especially in seismic zones.
10

Design and detailing of high strength reinforced concrete columns in Hong Kong

Ho, Ching-ming, Johnny. January 2000 (has links)
Thesis (M. Phil.)--University of Hong Kong, 2001. / Includes bibliographical references (leaves 149-155).

Page generated in 0.0506 seconds