• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 78
  • 12
  • 11
  • 8
  • 7
  • 4
  • 4
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 153
  • 153
  • 43
  • 32
  • 31
  • 22
  • 21
  • 18
  • 16
  • 15
  • 15
  • 14
  • 14
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Histone Deacetylase 3 Coordinates Heart Development Through Stage-Specific Roles in Cardiac Progenitor Cells

Lewandowski, Sara L. 21 December 2016 (has links)
Disruptions in cardiac development cause congenital heart disease, the most prevalent and deadly congenital malformation. Genetic and environmental factors are thought to contribute to these defects, however molecular mechanisms remain largely undefined. Recent work highlighted potential roles of chromatin- modifying enzymes in congenital heart disease pathogenesis. Histone deacetylases, a class of chromatin-modifying enzymes, have developmental importance and recognized roles in the mature heart. This thesis aimed to characterize functions of Hdac3 in cardiac development. We found loss of Hdac3 in the primary heart field causes precocious progenitor cell differentiation, resulting in hypoplastic ventricular walls, ventricular septal defect, and mid- gestational lethality. In primary heart field progenitors, Hdac3 interacts with, deacetylates, and functionally suppresses transcription factor Tbx5. Furthermore, a disease-associated Tbx5 mutation disrupts this interaction, rendering Tbx5 hyperacetylated and hyperactive. By contrast, deletion of Hdac3 in second heart field progenitors bypasses these defects, instead causing malformations in the outflow tract and semilunar valves, with lethality prior to birth. Affected semilunar valves and outflow tract vessels exhibit extracellular matrix and EndMT defects and activation of the Tgfβ1 signaling pathway. In normal second heart field development, Hdac3 represses Tgfβ1 transcription, independent of its deacetylase activity, by recruiting the PRC2 methyltransferase complex to methylate the Tgfβ1 promoter. Importantly, knockouts of Hdac3 in differentiated cardiac cells do not fully recapitulate the progenitor-specific knockout phenotypes. These results illustrate spatiotemporal roles of Hdac3, both deacetylase-dependent and deacetylase-independent, in cardiac development, suggesting that dysregulation of Hdac3 in cardiac progenitor cells could be a contributing factor in congenital heart disease pathogenesis.
142

The role of DNA methylation in regulating LHX3 gene expression

Malik, Raleigh Elizabeth 25 February 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / LIM homeodomain 3 (LHX3) is an important regulator of pituitary and nervous system development. To date, twelve LHX3 gene mutations have been identified in patients with combined pituitary hormone deficiency disease (CPHD). Understanding the molecular mechanisms governing LHX3/Lhx3 gene regulation will provide critical insights into organ development pathways and associated diseases. DNA methylation has been implicated in gene regulation in multiple physiological systems. This dissertation examines the role of DNA methylation in regulating the murine Lhx3 gene. To determine if demethylation of the Lhx3 gene promoter would induce its expression, murine pre-somatotrope pituitary cells that do not normally express Lhx3 (Pit-1/0 cells) were treated with the demethylating reagent, 5-Aza-2’-deoxycytidine. This treatment lead to activation of the Lhx3 gene and thus suggested that methylation contributes to Lhx3 gene regulation. Proteins that modify chromatin, such as histone deacetylases (HDACs) have also been shown to affect DNA methylation patterns and subsequent gene activation. Pit-1/0 pituitary cells treated with a combination of the demethylating reagent and the HDAC inhibitor, Trichostatin A led to activation of the Lhx3 gene, suggesting crosstalk between DNA methylation and histone modification processes. To assess DNA methylation levels, treated and untreated Pit-1/0 genomic DNA were subjected to bisulfite conversion and sequencing. Treated Pit-1/0 cells had decreased methylation compared to untreated cells. Chromatin immunoprecipitation assays demonstrated interactions between the methyl-binding protein, MeCP2 and the Lhx3 promoter regions in the Pit-1/0 cell line. Overall, the study demonstrates that DNA methylation patterns of the Lhx3 gene are associated with its expression status.
143

Design, Synthesis and Biological Evaluation of Histone Deacetylase Inhibitors and SARS-CoV-2 Main Protease Inhibitors

Banerjee, Riddhidev 11 July 2022 (has links)
No description available.
144

Optimisation d'antiœstrogènes dans le traitement du cancer du sein positif pour le récepteur des œstrogènes

Diennet, Marine 10 1900 (has links)
Deux tiers des cancers du sein expriment le récepteur des œstrogènes alpha (ERα), un facteur de transcription ligand dépendant responsable de la prolifération oncogénique de ces cellules. Ces tumeurs, dites ER positives (ER+), bénéficient de thérapies endocrines comme les antiœstrogènes (AE). Les AE sont des ligands compétitifs de ERα qui inhibent son activité transcriptionnelle. Le tamoxifène est l’antiœstrogène le plus utilisé en première ligne de traitement chez les patientes ayant un cancer du sein ER+. Malgré un bon pronostique initial, plus du tiers d’entre elles finiront par développer une résistance, parfois après de nombreuses années. L’absence de résistance croisée avec le tamoxifène place le fulvestrant comme seul dé-régulateur sélectif de ER (SERD) autorisé en clinique contre les tumeurs mammaires avancées résistantes. Malgré son profil antagoniste pur, le fulvestrant ne s’est pas révélé supérieur au tamoxifène en première ligne de traitement, cela étant attribué à sa faible biodisponibilité. D’autres SERD oralement disponibles sont en cours d’évaluation clinique. Des mutations du gène ESR1 (ERα) sont retrouvées dans environ 20% des tumeurs avancées résistantes à l’hormonothérapie et contribuent à la résistance au fulvestrant. Les mutations sont toutes retrouvées dans le domaine de liaison au ligand. La maladie progressera éventuellement avec le développement de métastases qui sont incurables. Il est donc crucial de (1) comprendre les mécanismes moléculaires médiant l’antiestrogénicité pure et l’impact des altérations génétiques impliquées dans la résistance aux AE pour (2) développer des thérapies ciblées plus efficaces qui pourraient lutter contre les tumeurs avancées résistantes. Les résultats prometteurs de plusieurs études in vitro et en clinique combinant un AE avec un inhibiteur d’histones désacétylases (HDACi) ont mené à la création de molécules hybrides combinant les deux fonctionnalités en une seule molécule. Nos travaux montrent que ces molécules hybrides dérivées du tamoxifène démontrent des propriétés inhibitrices améliorées par l’ajout d’un groupe fonctionnel inhibiteur des HDAC sur le squelette du tamoxifène. Ces composés sont antagonistes contre ERα et plusieurs HDAC et l’un d’eux possède une activité antiproliférative accrue par rapport aux composés parentaux dans les cellules de cancer du sein ER+ MCF-7. Notre étude fournit une preuve de concept que la combinaison d’une fonction pharmacologique HDACi sur le noyau d’un AE est prometteuse. Afin de mieux comprendre les déterminants moléculaires liés à l’induction de la SUMOylation de ERα et l’inhibition de son activité transcriptionnelle par le fulvestrant, nous avons testé l’impact de différentes mutations sur l’activité de plusieurs SERD, comprenant le fulvestrant. Nos résultats valident l’importance du résidu L536 dans la SUMOylation et la répression transcriptionnelle de ERα en réponse aux SERD. Les mutations ponctuelles L536P, Q et R, trouvées en clinique, compromettent la réponse au fulvestrant et à une sélection de SERD oraux in vitro. En résumé, nos résultats participent à une meilleure compréhension des caractéristiques moléculaires liées au mécanisme d’action du fulvestrant et de plusieurs SERD oraux de nouvelle génération. L’ensemble de nos résultats devraient aider au développement de nouvelles molécules plus efficaces contre les tumeurs résistantes, y compris des composés avec une double fonction inhibitrice AE-HDACi. / Two thirds of breast tumors are classified as positive for estrogen receptor alpha (ERα), a ligand-dependent transcription factor driving breast cancer cell proliferation. ER-positive (ER+) tumors benefit from endocrine therapies such as antiestrogens (AE). AE compete with ERα natural ligands and inhibit its transcriptional activity. Tamoxifen is the gold-standard for antiestrogenic therapy in patients with primary ER+ breast cancer. Despite a good initial prognosis, more than one-third will eventually develop resistance, sometimes after long periods of latency. Fulvestrant, known as a “pure” AE, is the only selective ER deregulator (SERD) approved in advanced breast cancer even after development of resistance to tamoxifen. Despite its pure antagonistic profile, fulvestrant has not proven superior to tamoxifen in first-line treatment, which is attributed to poor pharmacological properties. New generation SERDs with orally bioavailable properties are currently tested in the clinic. Mutations of ERα are found in about 20% of hormone-resistant advanced tumors and contribute to resistance to fulvestrant. The mutations are all located in the ligand binding domain. Resistant tumors will eventually progress and develop metastases which are deadly. It is therefore crucial to (1) understand the molecular determinants of pure antiestrogenicity and the impact of genetic alterations involved in AE resistance to (2) develop treatments with improved cytotoxic activities to achieve a more efficient suppression of advanced tumors. Promising results from several in vitro and clinical studies combining an AE with a histone deacetylase inhibitor (HDACi) have led to the design of hybrid molecules combining both functionalities into a single molecule. Our work shows that tamoxifen-derived hybrids display properties by the addition of an HDAC inhibitory functional group (HDACi) on the tamoxifen backbone. These compounds have inhibitory activities against ERα and several HDACs. One hybrid exhibits an improved cytotoxic activity against ER+ MCF-7 breast cancer cells compared to parental molecules. Our study provides proof of concept that combining HDACi function to the core of an AE is promising. To better understand the molecular determinants related to the induction of ERα SUMOylation and transcriptional repression by fulvestrant, we evaluated the impact of different mutations on the activity of several SERDs, including fulvestrant. Our results validate the importance of residue L536 in SUMOylation and transcriptional repression of ERα in response to SERDs. L536P, Q, and R point mutations are found in the clinic compromise the response to fulvestrant and to several oral SERDs in vitro. In summary, our results give better insights into the mechanism of action of fulvestrant and new generation oral SERDs and on the impact of naturally occurring mutations on transcriptional responses to these AE. Taken together, our results should help in the design of more efficient molecules, including compounds with dual AE-HDACi inhibitory function.
145

Role of HDACs in the regulation of TERT in neuroblastoma

Finkler, Sabine 24 February 2021 (has links)
Hohe Telomeraseaktivität bedingt durch genomische TERT-Rearrangements definiert eine Gruppe an Hochrisiko-Neuroblastompatienten mit ungünstiger Prognose. Das Abzielen auf Telomerase ist ein hochpriorisierter Ansatzpunkt in der Therapie, für die es bislang keine klinisch erfolgreichen Inhibitoren gibt. Der Einsatz von epigenetisch wirksamen Histondeacetylase Inhibitoren (HDACi) stellt dabei eine interessante Therapieoption dar. In TERT-rearrangierten Neuroblastomzellen erzielte die Behandlung mit verschiedenen pan-, Klasse I oder spezifischen HDAC1/2 Inhibitoren eine Supprimierung der TERT mRNA Expression und der Telomeraseaktivität. RNA-Interferenz Studien bestätigten, dass HDAC1 und HDAC2 die TERT Expression positiv regulieren. Die transiente Überexpression von TERT zeigte einen partiellen Rescue des HDACi-bedingten anti-proliferativen Effekts. Der präventive und therapeutische Einsatz von HDACi Panobinostat verlangsamte das Xenografttumorwachstum, die TERT-Expression und Telomeraseaktivität in subkutanen NMRI-Foxn1nu/nu Mausmodellen des TERT-rearrangierten Neuroblastoms bei klinisch relevanten Dosen. Dies zeigt das translationale Potential und die klinische Durchführbarkeit der Panobinostat-Behandlung. ChIP Sequenzierung und Methylierungsanalyse zeigten keine bedeutenden Unterschiede der Histonmodifikationen und der Methylierung von CpG Dinukleotiden am TERT Lokus nach Panobinostatbehandlung. Die Inhibierung der de novo RNA Synthese zeigte, dass die Stabilität des TERT mRNA Transkripts nach Panobinostatbehandlung verringert war. Dies deutet darauf hin, dass die reduzierte Transkriptstabilität der zugrundeliegende molekulare Mechanismus ist. Zusammenfassend konnte gezeigt werden, dass die hohe Telomeraseaktivität in TERT-rearrangierten Neuroblastommodellen durch den Einsatz zugelassener HDACi supprimiert werden kann. / Telomerase activation by genomic TERT-rearrangements defines a subgroup of high-risk neuroblastomas with adverse outcome. Accordingly, telomerase activity presents a high-priority drug target with no currently available clinical inhibitors. It was assessed whether telomerase activity could be inhibited through histone deacetylase (HDAC) inhibition in models of TERT-rearranged neuroblastoma. Treatment with a panel of seven pan-, class I- or specific HDAC1/2 inhibitors suppressed TERT mRNA expression and telomerase activity in TERT-rearranged neuroblastoma cells at clinically achievable concentrations. RNA interference-based studies confirmed that HDAC1 and HDAC2 positively regulate TERT transcript levels. Enforced TERT expression partly rescued the anti-proliferative effect of HDAC inhibition indicating a causal role of TERT suppression in the HDAC inhibitormediated tumor-suppressive phenotype. Panobinostat treatment, in preventive and therapeutic settings, considerably attenuated tumor growth in subcutaneous TERT-rearranged neuroblastoma xenograft models in NMRI-Foxn1nu/nu mice and suppressed TERT transcript levels and telomerase activity at clinically relevant doses, thus demonstrating translational potential and clinical feasibility. ChIP sequencing detected no major differences in the chromatin context of the TERT locus between HDAC inhibitor-treated and control cells. Likewise, HDAC inhibition did not substantially alter the methylation profile in the TERT region. Blocking de novo RNA synthesis, however, reduced TERT mRNA transcript levels in HDAC inhibitor-treated cells, suggesting reduced TERT transcript stability as the underlying molecular mechanism. In summary, high-level telomerase activity caused by genomic rearrangements in neuroblastoma models is suppressed by treatment with clinically approved HDAC inhibitors, suggesting indirect druggability and a potential molecular rationale for therapeutic intervention.
146

Caractérisation de la fonction des complexes histone déacétylases Rpd3S et Set3C

Drouin, Simon 05 1900 (has links)
La chromatine est essentielle au maintien de l’intégrité du génome, mais, ironiquement, constitue l’obstacle principal à la transcription des gènes. Plusieurs mécanismes ont été développés par la cellule pour pallier ce problème, dont l’acétylation des histones composant les nucléosomes. Cette acétylation, catalysée par des histones acétyl transférases (HATs), permet de réduire la force de l’interaction entre les nucléosomes et l’ADN, ce qui permet à la machinerie transcriptionnelle de faire son travail. Toutefois, on ne peut laisser la chromatine dans cet état permissif sans conséquence néfaste. Les histone déacétylases (HDACs) catalysent le clivage du groupement acétyle pour permettre à la chromatine de retrouver une conformation compacte. Cette thèse se penche sur la caractérisation de la fonction et du mécanisme de recrutement des complexes HDACs Rpd3S et Set3C. Le complexe Rpd3S est recruté aux régions transcrites par une interaction avec le domaine C-terminal hyperphosphorylé de Rpb1, une sous-unité de l’ARN polymérase II. Toutefois, le facteur d’élongation DSIF joue un rôle dans la régulation de cette association en limitant le recrutement de Rpd3S aux régions transcrites. L’activité HDAC de Rpd3S, quant à elle, dépend de la méthylation du résidu H3K36 par l’histone méthyltransférase Set2. La fonction du complexe Set3C n’est pas clairement définie. Ce complexe est recruté à la plupart de ses cibles par l’interaction entre le domaine PHD de Set3 et le résidu H3K4 di- ou triméthylé. Un mécanisme indépendant de cette méthylation, possiblement le même que pour Rpd3S, régit toutefois l’association de Set3C aux régions codantes des gènes les plus transcrits. La majorité de ces résultats ont été obtenus par la technique d’immunoprécipitation de la chromatine couplée aux biopuces (ChIP-chip). Le protocole technique et le design expérimental de ce type d’expérience fera aussi l’objet d’une discussion approfondie. / Chromatin is essential for the maintenance of genomic integrity but, ironically, is also the main barrier to gene transcription. Many mechanisms, such as histone acetylation, have evolved to overcome this problem. Histone acetylation, catalyzed by histone acetyltransferases (HATs), weakens the internucleosomal and nucleosome-DNA interactions, thus permitting the transcriptional machinery access to its template. However, this permissive chromatin state also allows for opportunistic DNA binding events. Histone deacetylases (HDACs) help restore a compact chromatin structure by catalyzing the removal of acetyl moieties from histones. This thesis focuses on the characterization of the function and of the recruitment mechanism of HDAC complexes Rpd3S and Set3C. The Rpd3S complex is recruited to actively transcribed coding regions through interactions with the hyperphosphorylated C-terminal domain of Rpb1, a subunit of RNA polymerase II, with the DSIF elongation factor playing a role in limiting this recruitment. However, the HDAC activity of Rpd3S depends on H3K36 methylation, which is catalyzed by the Set2 histone methyltransferase. The Set3C complex’ function is still not clearly defined. It is recruited to most of its targets through the interaction between the Set3 PHD domain and di- or trimethylated H3K4. However, Set3C recruitment to genes displaying high RNA polymerase II occupancy is independent of H3K4 methylation. The mechanism by which Set3C is recruited to this gene subset is under investigation. These results have mostly been obtained through chromatin immunoprecipitation coupled to tiling microarrays (ChIP-chip). The protocol and experimental design challenges inherent to this technique will also be discussed in depth.
147

Homéostasie des histones en réponse au dommage à l’ADN et étude d’inhibiteurs de désacétylases d’importance clinique

Villeneuve, Valérie 01 1900 (has links)
La chromatine possède une plasticité complexe et essentielle pour répondre à différents mécanismes cellulaires fondamentaux tels la réplication, la transcription et la réparation de l’ADN. Les histones sont les constituants essentiels de la formation des nucléosomes qui assurent le bon fonctionnement cellulaire d’où l’intérêt de cette thèse d’y porter une attention particulière. Un dysfonctionnement de la chromatine est souvent associé à l’émergence du cancer. Le chapitre II de cette thèse focalise sur la répression transcriptionnelle des gènes d’histones par le complexe HIR (HIstone gene Repressor) en réponse au dommage à l'ADN chez Saccharomyces cerevisiae. Lors de dommage à l’ADN en début de phase S, les kinases du point de contrôle Mec1, Tel1 et Rad53 s’assurent de bloquer les origines tardives de réplication pour limiter le nombre de collisions potentiellement mutagéniques ou cytotoxiques entre les ADN polymérases et les lésions persistantes dans l'ADN. Lorsque la synthèse totale d’ADN est soudainement ralentie par le point de contrôle, l’accumulation d'un excès d'histones nouvellement synthétisées est néfaste pour les cellules car les histones libres se lient de manière non-spécifique aux acides nucléiques. L'un des mécanismes mis en place afin de minimiser la quantité d’histones libres consiste à réprimer la transcription des gènes d'histones lors d'une chute rapide de la synthèse d'ADN, mais les bases moléculaires de ce mécanisme étaient très mal connues. Notre étude sur la répression des gènes d’histones en réponse aux agents génotoxiques nous a permis d’identifier que les kinases du point de contrôle jouent un rôle dans la répression des gènes d’histones. Avant le début de mon projet, il était déjà connu que le complexe HIR est requis pour la répression des gènes d’histones en phase G1, G2/M et lors de dommage à l’ADN en phase S. Par contre, la régulation du complexe HIR en réponse au dommage à l'ADN n'était pas connue. Nous avons démontré par des essais de spectrométrie de masse (SM) que Rad53 régule le complexe HIR en phosphorylant directement une de ses sous-unités, Hpc2, à de multiples résidus in vivo et in vitro. La phosphorylation d’Hpc2 est essentielle pour le recrutement aux promoteurs de gènes d’histones du complexe RSC (Remodels the Structure of Chromatin) dont la présence sur les promoteurs des gènes d'histones corrèle avec leur répression. De plus, nous avons mis à jour un nouveau mécanisme de régulation du complexe HIR durant la progression normale à travers le cycle cellulaire ainsi qu'en réponse aux agents génotoxiques. En effet, durant le cycle cellulaire normal, la protéine Hpc2 est très instable durant la transition G1/S afin de permettre la transcription des gènes d’histones et la production d'un pool d'histones néo-synthétisées juste avant l'initiation de la réplication de l’ADN. Toutefois, Hpc2 n'est instable que pour une brève période de temps durant la phase S. Ces résultats suggèrent qu'Hpc2 est une protéine clef pour la régulation de l'activité du complexe HIR et la répression des gènes d’histones lors du cycle cellulaire normal ainsi qu'en réponse au dommage à l’ADN. Dans le but de poursuivre notre étude sur la régulation des histones, le chapitre III de ma thèse concerne l’analyse globale de l’acétylation des histones induite par les inhibiteurs d’histone désacétylases (HDACi) dans les cellules normales et cancéreuses. Les histones désacétylases (HDACs) sont les enzymes qui enlèvent l’acétylation sur les lysines des histones. Dans plusieurs types de cancers, les HDACs contribuent à l’oncogenèse par leur fusion aberrante avec des complexes protéiques oncogéniques. Les perturbations causées mènent souvent à un état silencieux anormal des suppresseurs de tumeurs. Les HDACs sont donc une cible de choix dans le traitement des cancers engendrés par ces protéines de fusion. Notre étude de l’effet sur l’acétylation des histones de deux inhibiteurs d'HDACs de relevance clinique, le vorinostat (SAHA) et l’entinostat (MS-275), a permis de démontrer une augmentation élevée de l’acétylation globale des histones H3 et H4, contrairement à H2A et H2B, et ce, autant chez les cellules normales que cancéreuses. Notre quantification en SM de l'acétylation des histones a révélé de façon inattendue que la stœchiométrie d'acétylation sur la lysine 56 de l’histone H3 (H3K56Ac) est de seulement 0,03% et, de manière surprenante, cette stœchiométrie n'augmente pas dans des cellules traitées avec différents HDACi. Plusieurs études de H3K56Ac chez l’humain présentes dans la littérature ont rapporté des résultats irréconciliables. Qui plus est, H3K56Ac était considéré comme un biomarqueur potentiel dans le diagnostic et pronostic de plusieurs types de cancers. C’est pourquoi nous avons porté notre attention sur la spécificité des anticorps utilisés et avons déterminé qu’une grande majorité d’anticorps utilisés dans la littérature reconnaissent d’autres sites d'acétylation de l’histone H3, notamment H3K9Ac dont la stœchiométrie d'acétylation in vivo est beaucoup plus élevée que celle d'H3K56Ac. De plus, le chapitre IV fait suite à notre étude sur l’acétylation des histones et consiste en un rapport spécial de recherche décrivant la fonction de H3K56Ac chez la levure et l’homme et comporte également une évaluation d’un anticorps supposément spécifique d'H3K56Ac en tant qu'outil diagnostic du cancer chez l’humain. / The chromatin is a complex structure and its plasticity is essential to complete different fundamental cellular processes such as DNA replication, transcription and repair. Furthermore, chromatin malfunction is often associated with cancer emergence. The focus of this thesis will be on the function and regulation of histones, as they are essential components of nucleosomes and they ensure proper chromatin formation. Chapter II of this thesis focuses on the transcriptional repression of histone genes by the HIR (HIstone gene Repressor) complex in response to DNA damage in Saccharomyces cerevisiae. When DNA damage occurs in early S phase, the DNA damage checkpoint kinases Mec1, Tel1 and Rad53 block late origins of replication to limit potentially mutagenic or cytotoxic collisions between DNA polymerases and remaining DNA lesions. When the total DNA synthesis rate drops suddenly in S- phase, following the checkpoint control activation, accumulation of newly synthesized histones becomes detrimental for the cells because free histones bind non-specifically to nucleic acids. One mechanism that contributes to a reduction in free histones at this time is the repression of histone gene transcription; however, the molecular basis of this repression was not known. Our study on histone gene repression in response to genotoxic agents allowed us to identify the checkpoint kinases as major players in the repression of histone genes. Before initiating this project, it was known that the HIR complex is required to repress histone genes in G1 and G2/M phases and during DNA damage. Nonetheless, HIR complex regulation was not well characterized. We demonstrated by mass spectrometry (MS) analyses that Rad53 regulates the HIR complex by directly phosphorylating one of its subunits, Hpc2, at many residues in vivo and in vitro. Hpc2 phosphorylation is essential to recruit the RSC complex (Remodels the Structure of Chromatin) to histone gene promoters where its presence correlates with histone gene repression. Moreover, we uncovered a novel mechanism for the HIR complex regulation during a normal cell cycle progression and in response to genotoxic agents. Indeed, during a normal cell cycle, the Hpc2 protein is very unstable at the G1/S transition to allow histone gene transcription and production of a pool of newly synthesized histones just before DNA replication initiation. These results suggest that Hpc2 is a key player in the regulation of HIR complex activity and can repress histone gene expression both during a normal cell cycle and in response to DNA damage. In order to pursue our study on histone regulation, chapter III of this thesis covers histone acetylation induced by histone deacetylase inhibitors (HDACi) in normal and cancer cells. Histone deacetylases (HDACs) are enzymes that remove acetyl groups from lysine residues on histones, condensing the chromatin and effectively repressing local transcription. Several types of cancers are characterized by epigenetic abnormalities and HDACs contribute to oncogenesis by aberrant fusion with oncogenic protein complexes. The disruptions often lead to an abnormal silent state of tumour suppressors. HDACs are then targets of interest in cancer treatment caused by those fusion proteins. Our study of the effects of two clinically relevant HDAC inhibitors, vorinostat (SAHA) and entinostat (MS-275) on acetylation of histones demonstrated an obvious increase of histones H3 and H4 acetylation, unlike histones H2A and H2B in both normal and cancer cells. Unexpectedly, our MS quantification of histone acetylation revealed that the stoichiometry of histone H3 lysine 56 acetylation (H3K56Ac) was only 0.03% and, surprisingly, this stoichiometry did not increase upon HDACi treatments. Several reported studies in the literature of H3K56Ac in humans are irreconcilable. Furthermore, H3K56Ac was considered as a potential biomarker in diagnosis and prognosis in many cancer types. Therefore we focussed on antibody specificity and determined that the majority of antibodies used in the literature recognize other acetylation sites in histone H3, especially H3K9Ac whose stoichiometry of acetylation in vivo is much higher than H3K56Ac. Additionally, chapter IV is a follow-up of our study on histone acetylation and consists of a special report describing the function of H3K56Ac in yeast and human and also contains an evaluation of a supposedly specific H3K56Ac antibody as a diagnostic tool in human cancers.
148

L'acide valproïque inhibe la progression dans le cycle cellulaire chez Saccharomyces cerevisiae

Desfossés-Baron, Kristelle 04 1900 (has links)
L’acétylation est une modification post-traductionnelle des protéines essentielles. Elle est impliquée dans bon nombre de processus cellulaires importants comme la régulation de la structure de la chromatine et le recrutement de protéines. Deux groupes d’enzymes, soient les lysines acétyltransférases et les lysines désacétylases, régulent cette modification, autant sur les histones que sur les autres protéines. Au cours des dernières années, de petites molécules inhibitrices des désacétylases ont été découvertes. Certaines d’entre elles semblent prometteuses contre diverses maladies telles le cancer. L’acide valproïque, un inhibiteur de deux des trois classes des désacétylases, a un effet antiprolifératif chez plusieurs organismes modèles. Toutefois, les mécanismes cellulaires sous-jacents à cet effet restent encore méconnus. Ce mémoire met en lumière l’effet pH dépendant de l’acide valproïque sur différentes voies cellulaires importantes chez la levure Saccharomyces cerevisiae. Il démontre que ce composé a la capacité d’inhiber la transition entre les phases G1 et S par son action sur l’expression des cyclines de la phase G1. De plus, il inhibe l’activation de la kinase principale de la voie activée suite à un stress à la paroi cellulaire. L’acide valproïque occasionne également un arrêt dans la réplication de l’ADN sans y causer de dommage. Il s’agit là d’un effet unique qui, à notre connaissance, n’est pas observable avec d’autres agents qui inhibent la progression en phase S. / Acetylation is an essential post-translational modification involved in many important cellular processes such as regulation of chromatin structure and proteins interactions. Two enzyme families, lysine acetyltransferases and lysine deacetylases, allow proper regulation of this modification both on histones and non-histones proteins. In recent years, the discovery of small deacetylase inhibitors has led to promising novel therapy in the treatment against various diseases such as cancer. Valproic acid, a class I and II deacetylase inhibitor, has been shown to have antiproliferative effects in various models. However, the cellular mechanisms underlying this effect remain unknown. This thesis highlights the pH-dependent effects of VPA on numerous important cellular pathways in the yeast Saccharomyces cerevisiae. Our results demonstrate that VPA inhibits the transition from G1 to S phase of the cell cycle by its action on the expression of G1 cyclins. Moreover, VPA inhibits the activation of the main kinase involved in the cell wall integrity pathway. Furthermore, VPA exposure also leads to DNA replication arrest in a DNA damage-independent manner. This is a unique effect that, to our knowledge, is not observable with other agents that inhibit S phase progression.
149

Implication des facteurs épigénétiques dans l'épileptogenèse et les déficits cognitifs associés à l'épilepsie du lobe temporal

Siyoucef, Souhila Safia 18 December 2012 (has links)
L'épilepsie du lobe temporal (ELT) est la forme la plus fréquente de l'épilepsie chez l'adulte. Elle se traduit par des crises spontanées et récurrentes, qui sont résistantes à tout traitement dans 90% des cas. Une agression initiale du cerveau (traumatisme crânien, méningite, convulsions fébriles etc.), est souvent à l'origine de la transformation d'un cerveau « sain » en cerveau épileptique. L'ensemble des processus responsables de cette transition s'appelle l'épileptogenèse. Pouvoir bloquer et/ou retarder l'épileptogenèse chez les patients à risque est une question de santé majeure. En plus des crises, l'ELT soulève d'autres questions. Elle est souvent associée à des déficits cognitifs, qui sont la conséquence de la réorganisation des circuits neuronaux. Ces déficits pourraient être traités de façon indépendante de l'épilepsie elle-même. Le projet de recherche de cette thèse s'inscrit dans ce cadre général. / Temporal Lobe Epilepsy (TLE) is the most common form of epilepsy in adults. It translates into spontaneous and recurrent seizures, which are resistant to any treatment in 90% of cases. An initial brain insult (head injury, meningitis, febrile seizures etc.), is often the cause of the transformation of a "healthy" brain into an epileptic one. The process responsible for this transition is called epileptogenesis. Blocking and/or delaying epileptogenesis in at-risk patients is a key issue for public health. In addition to the seizures, TLE raises other problems. It is often associated with cognitive deficits, which are the result of the reorganization of neuronal circuits. These deficits may be treated independently of epilepsy itself. The work presented here fits into this general framework.
150

Control of transcription initiation by the stress activated hog1 kinase

Zapater Enrique, Meritxell 01 December 2006 (has links)
En el llevat Saccharomyces cerevisiae els canvis en les condicions osmòtiques del medi extracel.lular són sensades per la MAP cinasa Hog1, la qual permet dur a terme l'adaptació cel.lular mitjançant la modulació de l'expressió gènica, de la traducció i de la progressió del cicle cel.lular. A l'inici d'aquest projecte de tesi, els mecanismes pels quals Hog1 controla l'expressió gènica no eren del tot coneguts. El nostre objectiu va ser caracteritzar el mecanisme molecular pel qual Hog1 modula la transcripció en resposta a estrès osmòtic. Hem aconseguit demostrar que el reclutament de Hog1 als promotors sensibles a estrès osmòtic per part del factor de transcripció és essencial per al reclutament i activació de la RNA polimerasa II, mecanisme que podria estar conservat en les cèl.lules eucariotes. També hem identificat noves activitats remodeladores de cromatina implicades en la resposta gènica a osmoestrès mediada per Hog1. Vàrem realitzar un cribatge genètic per identificar mutacions que provoquessin osmosensibilitat i una reducció en l'expressió de gens de resposta a estrès osmòtic. Aquest cribatge ens va permetre identificar nous reguladors de la transcripció mediada per osmoestrès: la histona deacetilasa Rpd3 i els complexes SAGA i mediador. Els nostres resultats permeten, doncs, definir un important paper per a Rpd3, SAGA i mediador en la inducció gènica mediada per Hog1, i han estat importants per assolir una millor visió de com les cinases activades per estrès regulen la iniciació de la transcripció. / In Saccharomyces cerevisiae, changes in the extracellular osmotic conditions are sensed by the HOG MAPK pathway, which elicits the program for cell adaptation, including modulation of gene expression, translation and cell-cycle progression. At the beginning of this PhD Project, the mechanisms by which Hog1 was controlling gene transcription were not completely understood. Our main objective was to characterize the molecular mechanisms by which the Hog1 MAPK modulates transcription upon osmostress. We have shown that anchoring of Hog1 to osmoresponsive promoters by the transcription factor is essential for recruitment and activation of RNA polymerase II, a mechanism that might be conserved among eukaryotic cells. In addition, we identified novel chromatin modifying and remodelling activities involved in the Hog1-mediated osmostress gene expression. We performed a genome-wide genetic screening searching for mutations that render cells osmosensitive and displayed reduced expression of osmoresponsive genes. Rpd3 histone deacetylase, SAGA and Mediator complexes were identified as novel regulators of osmostress-mediated transcription. Thus, our results define a major role for Rpd3, SAGA and Mediator in the Hog1-mediated osmostress gene induction, and have been important to achieve a better view of how a SAPK regulates transcription initiation.

Page generated in 0.0617 seconds