• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An investigation of point image analysis for evaluating holographic image quality /

Plaisted, Parker Bennett. January 1993 (has links)
Thesis (M.S.)--Rochester Institute of Technology, 1993. / Typescript. Includes bibliographical references (leaves 131-136).
2

Automated analysis system for the study of digital inline holograms of aquatic particles

Burns, Nicholas January 2011 (has links)
The work embodied in this thesis describes software techniques developed to analyse digital inline holograms of suspended particle fields, particularly in aquatic environ- ments. The primary motivation behind this work has been development of tech- niques to extract useable information from individual holograms within holovideos, producing focused silhouettes of recorded plankton and other particulates with min- imal user intervention. Two automated focusing algorithms are developed and presented in this work, both of which obtain comparable results for holograms of sparse plankton populations. The first approach is based on rectangular regions of interest (ROIs), which are aligned to (x, y) dimensions, and localise particles within the two-dimensional recon- structed planes obtained from holovideo frames. Due to poor immunity to particle merging when applied to denser particle fields, a second approach was developed using arbitrary polygons with which to localise particle positions in reconstructed planes. This new approach offers a greater immunity to the merging of particles lying in close proximity in the (x, y) dimensions of the hologram, and allows better particle localisation for high density particle holograms. Both ROI and polygon based particle localisation are explored to identify strengths and weaknesses, and complete automated scanning procedures developed in both cases. Examples are provided of typical output from automated scanning algorithms when applied to a number of sample holograms, and areas of weakness highlighted for future work.

Page generated in 0.1043 seconds