• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Towards a homotopical algebra of dependent types / Vers une algèbre homotopique des types dépendants

Cagne, Pierre 07 December 2018 (has links)
Cette thèse est consacrée à l'étude des interactions entre les structures homotopiques en théorie des catégories et les modèles catégoriques de la théorie des types de Martin-Löf. Le mémoire s'articule selon trois axes: les bifibrationos de Quillen, les catégories homotopiques des bifibrations de Quillen, et les tribus généralisées. Le premier axe définit une nouvelle notion de bifibration classifiant les pseudo foncteurs avec de bonnes propriétés depuis un catégorie de modèles et à valeurs dans la 2-catégorie des catégories de modèles et adjonctions de Quillen entre elles. En particulier on montre comment équipper d'une structure de modèle la construction de Grothendieck d'un tel pseudo foncteur. Le théorème principal de cette partie est une caractérisation des bonnes propriétés qu'un pseudo foncteur doit posséder pour supporter cette structure de catégorie de modèles sur sa construction de Grothendieck. En ce sens, on améliore les deux théorèmes précédemment existants dans la littérature qui ne donnent que des conditions suffisantes alors que nous donnons des conditions nécessaires et suffisantes. Le second axe se concentre sur le foncteur induit entre les catégories homotopiques des catégories de modèles mises en oeuvre dans une bifibration de Quillen. On y prouve que cette localization peut se faire en deux étapes au moyen d'un quotient homotopique à la Quillen itéré. De manière à rendre cette opération rigoureuse, on a besoin de travailler dans un cadre légèrement plus large que celui imaginé par Quillen : en se basant sur le travail d'Egger, on utilise des catégories de modèles sans nécessairement tous les (co)égalisateurs. Le chapitre de prérequis sert précisément à reconstruire la théorie basique des l'algèbre homotopique à la Quillen dans ce cadre élargi. Les structures mis à nu dans cette partie imposent de considérer des versions "homotopique" des poussés en avant et des tirés en arrière qu'on trouve habituellement dans les (op)fibrations de Grothendieck. C'est le point de départ pour le troisième axe, dans lequel on définit une nouvelle structure, appelée tribu relative, qui permet d'axiomatiser des versions homotopiques de la notion de flèche cartésienne et cocartésienne. Cela est obtenu en réinterprétant les (op)fibrations de Grothendieck en termes de problèmes de relèvement. L'outil principal dans cette partie est une version relative des systèmes de factorisation stricts ou faibles usuels. Cela nous permet en particulier d'expérimenter un nouveau demodèle de la théorie des types dépendants intentionnelle dans lequelles types identités sont donnés par l'exact analogue homotopique du prédicat d'égalité dans les hyperdoctrines de Lawvere. / This thesis is concerned with the study of the interplay between homotopical structures and categorical model of Martin-Löf's dependent type theory. The memoir revolves around three big topics: Quillen bifibrations, homotopy categories of Quillen bifibrations, and generalized tribes. The first axis defines a new notion of bifibrations, that classifies correctly behaved pseudo functors from a model category to the 2-category of model categories and Quillen adjunctions between them. In particular it endows the Grothendieck construction of such a pseudo functor with a model structure. The main theorem of this section acts as a charaterization of the well-behaved pseudo functors that tolerates this "model Gothendieck construction". In that respect, we improve the two previously known theorems on the subject in the litterature that only give sufficient conditions by designing necessary and sufficient conditions. The second axis deals with the functors induced between the homotopy categories of the model categories involved in a Quillen bifibration. We prove that this localization can be performed in two steps, by means of Quillen's construction of the homotopy category in an iterated fashion. To that extent we need a slightly larger framework for model categories than the one originally given by Quillen: following Egger's intuitions we chose not to require the existence of equalizers and coequalizers in our model categories. The background chapter makes sure that every usual fact of basichomotopical algebra holds also in that more general framework. The structures that are highlighted in that chapter call for the design of notions of "homotopical pushforward" and "homotopical pullback". This is achieved by the last axis: we design a structure, called relative tribe, that allows for a homotopical version of cocartesian morphisms by reinterpreting Grothendieck (op)fibrations in terms of lifting problems. The crucial tool in this last chapter is given by a relative version of orthogonal and weak factorization systems. This allows for a tentative design of a new model of intentional type theory where the identity types are given by the exact homotopical counterpart of the usual definition of the equality predicate in Lawvere's hyperdoctrines
2

Les fibrations de Grothendieck et l’algèbre homotopique / Grothendieck fibrations and homotopical algebra

Balzin, Eduard 20 June 2016 (has links)
Cette thèse est consacrée à l'étude des familles de catégories munies d'une structure homotopique. Les résultats principaux compris dans cette oeuvre sont : i. Une généralisation de la structure de modèles de Reedy, qui dans ce travail est construite pour les sections d'une famille convenable des catégories de modèles sur une catégorie de Reedy. À la différence des considérations précédentes, par exemple celles de Hirschowitz-Simpson, nous exigeons aussi peu de propriétés de la famille que possible, pour que notre résultat puisse être appliqué dans les situations où les foncteurs de transition ne sont pas linéaires. ii. Une extension du formalisme de Segal pour les structures algébriques, dans le territoire des catégories monoïdales sur une catégorie d'opérateurs au sens de Barwick. Pour ce faire, nous présentons les structures monoidales comme certaines opfibrations de Grotendieck, et introduisons les sections dérivées des opfibrations en utilisant les remplacements simpliciaux de Bousfield-Kan. Notre résultat concernant la structure de Reedy nous permet alors de travailler avec les sections dérivées. iii. Une preuve d'un certain résultat de la descente homotopique, qui donne des conditions suffisantes pour que le foncteur d'image inverse soit une équivalence entre catégories de sections dérivées au sens adapté. L'on montre ce résultat pour les foncteurs qui satisfont une propriété technique du genre ``Théorème A de Quillen'', les foncteurs que nous appelons résolutions. Un exemple d'une résolution est donné par un foncteur de la catégorie des arbres planaires stables de Kontsevich-Soibelman, au groupoïde fondamental stratifié de l'espace de Ran du $2$-disque / This thesis is devoted to the study of families of categories equipped with a homotopical structure. The principal results comprising this work are:i. A generalisation of the Reedy model structure, which, in this work, is constructed for sections of a suitable family of model categories over a Reedy category. Unlike previous considerations, such as Hirschowitz-Simpson, we require as little as possible from the family, so that our result may be applied in situations when the transition functors in the family are non-linear in nature. ii. An extension of Segal formalism for algebraic structures to the setting of monoidal categories over an operator category in the sense of Barwick. We do this by treating monoidal structures using the language of Grothendieck opfibrations, and introduce derived sections of the latter using the simplicial replacements of Bousfield-Kan. Our Reedy structure result then permits to work with derived sections. iii. A proof of a certain homotopy descent result, which gives sufficient conditions on when an inverse image functor is an equivalence between suitable categories of derived sections. We show this result for functors which satisfy a technical ``Quillen Theorem A''-type property, called resolutions. One example of a resolution is given by a functor from the category of planar marked trees of Kontsevich-Soibelman, to the stratified fundamental groupoid of the Ran space of the $2$-disc. An application of the homotopy descent result to this functor gives us a new proof of Deligne conjecture, providing an alternative to the use of operads
3

Théories homotopiques des algèbres unitaires et des opérades / Homotopy theories of unital algebras and operads

Le Grignou, Brice 14 September 2016 (has links)
Dans cette thèse, nous nous intéressons aux propriétés homotopiques des algèbres sur une opérade, desopérades elles-mêmes et des opérades colorées, dans le monde des complexes de chaînes. Nousintroduisons une nouvelle adjonction bar-cobar entre les opérades unitaires et les coopéradesconilpotentes courbées. Ceci nous permet de munir ces dernières d'une structure de modèles induite parla structure projective des opérades le long de cette adjonction, qui devient alors une équivalence deQuillen. Ce résultat permet de passer, sans perte d'information homotopique, dans le monde descoopérades qui est plus puissant : on peut y décrire, par exemple, les objets fibrants-cofibrants en termesd'opérades à homotopie près. Nous appliquons ensuite la même stratégie aux algèbres sur une opérade.Pour cela, on munit la catégorie des cogèbres sur la coopérade duale de Koszul d'une structure demodèles induite par celle de la catégorie des algèbres d'origine le long de leur adjonction bar-cobar, quidevient une équivalence de Quillen. Cela nous permet de décrire explicitement pour la première fois despropriétés homotopique des algèbres sur une opérade non nécessairement augmentée. Dans unedernière partie, nous introduisons la notion d'opérade colorée à homotopie près que nous arrivons àcomparer aux infinies-opérades de Moerdijk--Weiss au moyen d'un foncteur : le nerf dendroidal. Nousmontrons qu'il étend des constructions dues à Lurie et à Faonte et nous étudions ses propriétéshomotopiques. En particulier, sa restriction aux opérades colorées est un foncteur de Quillen à droite.Tout ceci permet de relier explicitement deux mondes des opérades supérieures / This thesis deals with the homotopical properties of algebras over an operad, of operads themselves andof colored operads, in the framework of chain complexes. We introduce a new bar-cobar adjunctionbetween unital operads and curved conilpotent cooperads. This allows us to endow the latter with aDépôt de thèseDonnées complémentairesmodel structure induced by the projective model structure on operads along this adjunction, which thenbecomes a Quillen-equivalence. This result allows us to study the homotopy theory of operads in theworld of cooperads which is more powerful: for instance, fibrant-cofibrant objects can be described interms of operads up to homotopy. We then apply the same strategy to algebras over an operad. Morespecifically, we endow the category of coalgebras over the Koszul dual cooperad with a model structureinduced by that of the category of algebras along their bar-cobar adjunction, which becomes a Quillenequivalence.This allows us to describe explicitly for the first time some homotopy properties of algebrasover a not necessarily augmented operad. In the last part, we introduce the notion of homotopy coloredoperad that we compare to Moerdijk--Weiss' infinity-operads by means of a functor: the dendroidalnerve. We show that it extends existing constructions due to Lurie and Faonte and we study itshomotopical properties. In particular, we show that its restriction to colored operads is a right Quillenfunctor. All this allows us to connect explicitly two different worlds of higher operads

Page generated in 0.0781 seconds