Spelling suggestions: "subject:"cybrid control algorithm"" "subject:"bybrid control algorithm""
1 |
Porovnání koncepcí hybridního pohonu v režimu denního dojíždění do práce / Comparison of Hybrid Powertrain Topologies in Daily Commuting RegimeUšiak, Michal January 2020 (has links)
The master’s thesis deals with modelling of various architectures of hybrid powertrains for three vehicle sizes in GT-SUITE and compares them in daily commuting operating mode. On top of making of the hybrid vehicle simulation models, control algorithms had to be created to manage the energy split between the internal combustion engine and the electric motor for each of the architectures. Routes to work and back were logged using the GPS and postprocessed to obtain the speed and the road grade profiles. Resulting data was used as an input in simulations of daily commuting. To compare all hybrid powertrain architectures, fuel economy and electricity consumption were evaluated for WLTP and daily commuting operating modes. Finally, the environmental impact of each topology was assessed based on an estimation of corresponding well-to-wheel emissions.
|
2 |
Process Control in High-Noise Environments Using A Limited Number Of MeasurementsBarajas, Leandro G. January 2003 (has links)
The topic of this dissertation is the derivation, development, and evaluation of novel hybrid algorithms for process control that use a limited number of measurements and that are suitable to operate in the presence of large amounts of process noise.
As an initial step, affine and neural network statistical process models are developed in order to simulate the steady-state system behavior. Such models are vitally important in the evaluation, testing, and improvement of all other process controllers referred to in this work. Afterwards, fuzzy logic controller rules are assimilated into a mathematical characterization of a model that includes the modes and mode transition rules that define a hybrid hierarchical process control. The main processing entity in such framework is a closed-loop control algorithm that performs global and then local optimizations in order to asymptotically reach minimum bias error; this is done while requiring a minimum number of iterations in order to promptly reach a desired operational window.
The results of this research are applied to surface mount technology manufacturing-lines yield optimization. This work achieves a practical degree of control over the solder-paste volume deposition in the Stencil Printing Process (SPP). Results show that it is possible to change the operating point of the process by modifying certain machine parameters and even compensate for the difference in height due to change in print direction.
|
Page generated in 0.0638 seconds