Spelling suggestions: "subject:"hydromechanical"" "subject:"hidromechanical""
21 |
Étude du comportement chimico-hydro-mécanique des argiles raides dans le contexte du stockage de déchets radioactifs / Study of the chemo-hydro-mechanical behavior of stiff clays in the context of radioactive waste disposalNguyen, Xuan Phu 06 March 2013 (has links)
La présente étude vise à comprendre le comportement chimico-hydro-mécanique des argiles raides à travers deux formations géologiques, l'argile de Boom et les argiles yprésiennes, qui sont censées être des formations hôtes potentielles pour le stockage de déchets radioactifs en Belgique. Le comportement volumique a été étudié tant à l'état intact qu'à l'état reconstitué, et sous différentes conditions : K0 et isotrope, sous des boucles de chargement - déchargement. Les résultats obtenus montrent que le comportement volumique de ces argiles est gouverné par la compétition entre l'effet physico-chimique et l'effet mécanique, caractérisée par une contrainte seuil qui correspond à la contrainte de gonflement en termes de changements de structure. Une loi de comportement volumique a été ainsi développée afin de décrire cet aspect. La perméabilité a été déterminée, comparée avec les résultats dans la littérature et corrélée avec les paramètres comme l'indice des vides. La variation de la perméabilité avec la profondeur ont mis en évidence le rôle déterminant des macro-pores dans le transfert des fluides. Le comportement volumique et la perméabilité des argiles de Boom et yprésiennes intactes sont aussi influencés par la variation de la composition chimique de l'eau de pore, qui modifie la double couche diffuse et favorise l'agrégation des particules argileuses. Les caractéristiques élastiques, la surface de charge et l'enveloppe de rupture ont été identifiées pour le comportement déviatorique des argiles de Boom et yprésiennes. Un modèle élasto-plastique conceptuel a été développé permettant de tenir compte des effets du gonflement et de la compétition entre l'effet mécanique et l'effet physico-chimique / The present research aims to understand the chemo-hydro-mechanical behavior of stiff clays through two geological formations, the Boom Clay and the ypresian clays which are considered as possible host formations for the radioactive wastes disposal in Belgium. The volume change behavior was studied in both intact and reconstituted states, and under different conditions: under K0 and isotropic loading, under loading/unloading loops. The results show that the volume change behavior is governed by the competition between the physico-chemical effect and the mechanical effect, characterized by a threshold stress which corresponds to the swelling stress in terms of structure changes. A constitutive law was developed to capture this aspect. The permeability was determined, compared with the results in literature and correlated with the parameters as void ratio. The permeability variation with depth shows the important role of macro-pores in fluids' transfer. The volume change behavior and permeability of intact Boom Clay and ypresian clays are also influenced by pore water chemical composition changes which modify the diffuse double layer and give rise to the aggregation of clay particles. The elastic parameters, yield curve and failure envelope of Boom Clay and ypresian clays were identified. A conceptual elasto-plastic model was developed, accounting for the swelling effects and the competition between the physico-chemical effect and the mechanical effect
|
22 |
Hydro-mechanical behaviour of bentonite-based materials used for high-level radioactive waste disposal / Comportement hydro-mécanique des matériaux à base de bentonite pour le stockage des déchets radioactifsWang, Qiong 10 December 2012 (has links)
La présente étude concerne le comportement hydromécanique des matériaux compactés à base de bentonite pour le stockage des déchets radioactifs en grande profondeur. Trois matériaux candidats ont été étudiés : la bentonite (MX80) pure, le mélange bentonite/argilite broyée et le mélange bentonite/sable. Une étude expérimentale sur la pression de gonflement du mélange bentonite/argilite a été premièrement réalisée. Cette étude a mis en évidence l'effet de la salinité de l'eau, de la procédure et la durée d'hydratation, du pré-existant vide technologique et des méthodes expérimentales. Une importante relation entre la pression de gonflement et la densité sèche finale de la bentonite a été élaborée. Ensuite, des essais de rétention d'eau, des essais d'hydratation et des essais oedométriques à succion contrôlée ont été réalisés sur des échantillons à différentes porosités tout en considérant la présence du vide technologique. En introduisant les paramètres comme indice des vides de la bentonite et le ratio volume d'eau, une analyse globale des effets des vides sur la réponse hydromécanique de la barrière ouvragée a été effectuée. Pour obtenir un meilleur aperçu de l'évolution de l'étanchéité dans le cas de vide technologique, l'effet de densité sèche finale (densité après fermeture de vide technologique) et du temps d'hydratation sur la microstructure a été, de même, étudié. La perméabilité de ce matériau à l'état non saturé a été ensuite étudiée en réalisant des essais de rétention d'eau et d'infiltration ainsi que par des observations de la microstructure. Les résultats obtenus ont permis de relier la variation de la conductivité hydraulique non saturée aux changements de la microstructure. Une expérimentation en modèle réduit reproduisant à une échelle 1/10ème les essais in-situ (SEALEX) a été effectuée, et cela pour étudier la reprise des vides à long terme d'un mélange compacté bentonite/sable, tout en considérant la présence d'un vide technologique. Les résultats ont été utilisés pour interpréter les observations de l'essai in situ. A une échelle de temps réduite, cette étude fournit des informations utiles pour estimer la durée et l'efficacité de la conception en place. Finalement, les données expérimentales obtenues dans le laboratoire sur le mélange bentonite/sable ont été interprétées dans le cadre du modèle de Barcelone (BExM). Après comparaison des résultats expérimentaux avec le modèle, les performances et les limitations du modèle ont été analysées / This study deals with the hydro-mechanical behaviour of compacted bentonite-based materials used as sealing materials in high-level radioactive waste repositories. The pure MX80 bentontie, mixtures of MX80/crushed claystone and MX80/sand were used in the investigation. An experimental study on the swelling pressure of the bentonite-based materials was first performed. The results evidenced the effects of water chemistry, hydration procedure and duration, pre-existing technological void and experimental methods. Emphasis was put on the relationship between the swelling pressure and the final dry density of bentonite. Afterwards, the water retention test, hydration test and suction controlled oedometer test were conducted on samples with different voids including the technological void and the void inside the soil. By introducing the parameters as bentonite void ratio and water volume ratio, an overall analysis of the effects of voids on the hydro-mechanical response of the compacted material was performed. To get better insight into the seal evolution in case of technological void, the effects of final dry density and hydration time on the microstructure features were also characterized. Then, the hydraulic properties under unsaturated state were investigated by carrying out water retention test and infiltration test as well as the microstructure observation. The results obtained allowed relating the variation of hydraulic conductivity to the microstructure changes. A small scale (1/10) mock up test of the SEALEX in situ experiment was also performed to study the recovery capacity of bentonite-based material with consideration of a technological void. The results were used for interpreting the in-situ observations. With a reduced time scale, it provides useful information for estimating the saturation duration and sealing effectiveness of the field design. Finally, the experimental data obtained in the laboratory on bentonite/sand mixture were interpreted in the framework of the Barcelona Expansive Model (BExM). By comparing the model with the experimental results, the performance and limitation of the model were analyzed
|
23 |
Problèmes géotechniques couplés en hydromécanique : application à l’érosion interne par suffusion / Geotechnical problems coupled with hydromechanics : application to internal soil erosion phenomenon of suffusion typeAbdou, Hashem 09 November 2016 (has links)
Le phénomène de suffusion correspond à la migration des particules fines érodées dans un milieu poreux sous l'action d’un flux hydraulique. Ce mécanisme pourrait être la cause principale des ruptures des remblais et des barrages en terre. De nombreuses études expérimentales ont été menées pour comprendre la suffusion et mettre en évidence les phénomènes couplés associés. Au niveau numérique, on trouve beaucoup de modèles analytiques et numériques mais rares sont ceux qui prennent en compte l’arrachement des particules, leur transport et leur dépôt éventuel (par un processus de colmatage ou pour des vitesses d’écoulement suffisamment faibles).En se basant sur une loi d’écoulement de type Darcy, sur la loi d’érosion de Papamichos et al (2001) modifiée par Bendahmane (2005)et sur une loi d’évolution de la viscosité de fluide (relation d’Einstein), nous développons une nouvelle approche hydromécanique de la suffusion. La résolution numérique du problème est réalisée par la méthode des éléments finis. Deux aspects sont présentés: le cadre général du modèle proposé (réalisé en 2D) avec une étude paramétrique et la validation du modèle avec une modélisation 3D réalisée avec le modèle géométrique de l’essai (Cross Erosion Test) (CET), ce qui permet de décrire à la fois les phénomènes d’érosion, de transport et de dépôt des particules érodées dans un milieu poreux saturé.Pour cela, nous avons choisi un outil de modélisation approprié à la représentation de phénomènes couplés tels que ceux mobilisés par l’érosion interne. Le logiciel Comsol-Multiphysics 3.4b, basé sur la méthode des éléments finis, a été retenu car il permet d’implanter relativement facilement de nouvelles équations constitutives des phénomènes. Dans un deuxième temps, le modèle a été validé sur des expériences de référence reflétant les phénomènes étudiés. Nous avons utilisé les résultats expérimentaux de Nguyen (2013) qui a mis au point un nouveau dispositif expérimental au laboratoire 3SR appelé " l'Essai d’Érosion Transverse " ou Cross Érosion Test. Deux types de sol ont été considérés : un sol gravelo-sableux(noté S3) et un sol limoneux de l’Isère (noté S4 et S4-a).Afin de discuter des aspects transitoire et dynamique du phénomène de suffusion, les vitesses d’écoulement, les gradients hydrauliques, la distribution de la porosité et de la perméabilité, la distribution de la concentration des particules érodées en suspension, et enfin la masse érodée sortantes ont mesurés au cours du temps et comparés aux résultats du modèle physique. / The phenomenon of Suffusion corresponds to the migration of fine eroded particles in a porous medium under the action of an internal water flow. This mechanism could be the main origin of damage in embankments and earth dams. Many experimental studies have been done to analyse the suffusion but actually understanding this phenomenon appears as a major scientific challenge. On the other hand, numerically, only a few studies were found which associate the mechanisms of detachment, transport and deposition of eroded particles.Based on the Darcy’s law model, the erosion model of Papamichos et al (2001) modified by Bendahmane (2005) and the fluid viscosity evolution law (Einstein relation), we developed a new hydro-mechanical approach of suffusion. The numerical solution of the problem is carried out by using a finite element method. Two aspects are presented: first, the general framework of the proposed model (implemented in 2D) with a parametric study and then the validation of the numerical model realized with a 3D study of the geometric model of the experimental study of Cross Erosion Test (CET). This model describes the three phenomena of suffusion: erosion, transport and deposition of eroded particles in a saturated soil.Furthermore, the numerical modeling of coupled phenomena of internal erosion is performed using the commercial software "Comsol Multiphysics-3.4b". However, to validate the model, experimental results on two types of soil: sandy gravel soil (S3) and the silt of Isère (S4 and S4-a) are used. These results are found in the PhD thesis of Nguyen(2013) who has developed a new apparatus called Cross Erosion Test (CET).Moreover, to discuss the transient and dynamic aspects of the phenomenon, the evaluation of the mass conservation with different figures of flow velocity, hydraulic gradient, hydraulic head, porosity and permeability distribution, concentration distribution, and of outgoing eroded particles, are measured over time and compared with experimental results.
|
24 |
Upscaling of Flow, Transport, and Stress-effects in Fractured Rock / Uppskalning av flöde och ämnestransport i sprickigt berg samt bergspänningens inverkanÖhman, Johan January 2005 (has links)
<p>One of many applications of geohydraulic modelling is assessing the suitability of a site to host a nuclear waste repository. This modelling task is complicated by scale-dependent heterogeneity and coupled thermo-hydro-mechanical (THM) processes. The objective here was to develop methods for (i) upscaling flow and transport in fractured media from detailed-scale data and (ii) accounting for THM-induced effects on regional-scale transport. An example field data set was used for demonstration.</p><p>A systematic framework was developed where equivalent properties of flow, transport, and stress-effects were estimated with discrete fracture network (DFN) modelling, at some block scale, and then transferred to a regional-scale stochastic continuum (SC) model. The selected block scale allowed a continuum approximation of flow, but not of transport. Instead, block-scale transport was quantified by transit time distributions and modelled with a particle random walk method at the regional scale.</p><p>An enhanced SC-upscaling approach was developed to reproduce the DFN flow results more simply. This required: (i) weighting of the input well-test data by their conductivity-dependent test volumes and (ii) conductivity-dependent correlation structure. Interestingly, the best-fitting correlation structure resembled the density function of DFN transmissivities. </p><p>Channelized transport, over distances exceeding the block scale, was modelled with a transport persistence length. A linear relationship was found between this persistence length and the macroscale dispersion coefficient, with a slope equal to a representative mean block-scale dispersion coefficient.</p><p>A method was also developed to combine well-test data and rock-mechanical data in estimating fracture transmissivities, and its application was demonstrated.</p><p>Finally, an overall sequential THM analysis was introduced allowing the estimation of the significance of waste-related thermo-mechanical (TM) effects on regional transport; here TM effects are calculated separately and their impact on fracture transmissivities were incorporated into the hybrid framework. For the particular case, their effects on regional-scale transport were small.</p>
|
25 |
Fractured Rock Masses as Equivalent Continua - A Numerical StudyMin, Ki-Bok January 2004 (has links)
In this thesis, fractured rock masses are treated asequivalent continua for large-scale analyses of rockengineering projects. Systematic developments are made for thedetermination of equivalent mechanical and hydraulic propertiesof fractured rock masses using a hybrid discrete fracturenetwork - distinct element method (DFN-DEM) approach. Thedetermined equivalent properties are then used for a far-fieldfinite element analysis of the thermo-mechanical impacts on thestress, deformation and permeability of fractured rockssurrounding a hypothetical geological repository of nuclearwaste. The geological data were extracted from the results ofan extensive site investigation programme at Sellafield, UK,conducted by Nirex UK Ltd. The scale dependencies of the hydraulic and mechanicalproperties were investigated by using multiple realizations ofthe fracture system geometry with increasing model sizes untilproperly defined hydraulic and mechanical representativeelementary volumes (REVs) were reached. The validity of thesecond order permeability tensor and the fourth-ordermechanical compliance tensor were tested for continuum analysesat larger scales. The REV was determined to be around 5 m formechanical and hydraulic data in this study. Analysis of the stress-dependent mechanical and hydraulicproperties shows that the effect of rock stresses is crucial.The elastic moduli increase significantly with the increase ofstress and an empirical equation of stress-dependent elasticmodulus is suggested based on results of numerical experiments.Calculations of the Poisson's ratios suggest greater valuesthan are normally assumed in practice. Depending on the stateof stress, permeability decreases or increases with increasingcompressive stress. Stress-induced flow channeling effect iscaptured by numerical modeling for the first time and detailedmechanisms of shear dilation of fractures are provided. Basedon the numerical experiments, a set of empirical equations wassuggested for the stress-dependent permeability, consideringboth normal deformation and shear dilation of fractures. Thermo-mechanical impact on the performance of ahypothetical repository at a far-field scale (5 km by 1 km) wasinvestigated with the stress-dependent equivalent propertiesdetermined at the REV scale. This analysis shows thatmechanical responses vary significantly depending on how themechanical properties were determined. The change ofpermeability due to the thermal loading is, however, notsignificant in this particular case. The thesis provides a framework for systematic analysis oflarge-scale engineering applications in fractured rock masses,such as geological repositories of nuclear wastes. Keyword:Fractured rock masses, Equivalent Continuum,Discrete Fracture Network (DFN), Distinct Element Method (DEM),Finite Element Method (FEM), Nuclear Waste Disposal, CoupledThermo-Hydro-Mechanical Processes
|
26 |
Upscaling of Flow, Transport, and Stress-effects in Fractured Rock / Uppskalning av flöde och ämnestransport i sprickigt berg samt bergspänningens inverkanÖhman, Johan January 2005 (has links)
One of many applications of geohydraulic modelling is assessing the suitability of a site to host a nuclear waste repository. This modelling task is complicated by scale-dependent heterogeneity and coupled thermo-hydro-mechanical (THM) processes. The objective here was to develop methods for (i) upscaling flow and transport in fractured media from detailed-scale data and (ii) accounting for THM-induced effects on regional-scale transport. An example field data set was used for demonstration. A systematic framework was developed where equivalent properties of flow, transport, and stress-effects were estimated with discrete fracture network (DFN) modelling, at some block scale, and then transferred to a regional-scale stochastic continuum (SC) model. The selected block scale allowed a continuum approximation of flow, but not of transport. Instead, block-scale transport was quantified by transit time distributions and modelled with a particle random walk method at the regional scale. An enhanced SC-upscaling approach was developed to reproduce the DFN flow results more simply. This required: (i) weighting of the input well-test data by their conductivity-dependent test volumes and (ii) conductivity-dependent correlation structure. Interestingly, the best-fitting correlation structure resembled the density function of DFN transmissivities. Channelized transport, over distances exceeding the block scale, was modelled with a transport persistence length. A linear relationship was found between this persistence length and the macroscale dispersion coefficient, with a slope equal to a representative mean block-scale dispersion coefficient. A method was also developed to combine well-test data and rock-mechanical data in estimating fracture transmissivities, and its application was demonstrated. Finally, an overall sequential THM analysis was introduced allowing the estimation of the significance of waste-related thermo-mechanical (TM) effects on regional transport; here TM effects are calculated separately and their impact on fracture transmissivities were incorporated into the hybrid framework. For the particular case, their effects on regional-scale transport were small.
|
27 |
Numerical modeling of coupled thermo-hydro-mechanical processes in geological porous mediaTong, Fuguo January 2010 (has links)
Coupled Thermo-Hydro-Mechanical (THM) behavior in geological porous media has been a subject of great interest in many geoengineering disciplines. Many attempts have been made to develop numerical prediction capabilities associated with topics such as the movement of pollutant plumes, gas injection, energy storage, geothermal energy extraction, and safety assessment of repositories for radioactive waste and spent nuclear fuel. This thesis presents a new numerical modeling approach and a new computer code for simulating coupled THM behavior in geological porous media in general, and compacted bentonite clays in particular, as buffer materials in underground radioactive waste repositories. New governing equations were derived according to the theory of mixtures, considering interactions among solid-phase deformation, flows of water and gases, heat transport, and phase change of water. For three-dimensional problems, eight governing equations were formulated to describe the coupled THM processes. A new thermal conductivity model was developed to predict the thermal conductivity of geological porous media as composite mixtures. The proposed model considers the combined effects of solid mineral composition, temperature, liquid saturation degree, porosity and pressure on the effective thermal conductivity of the porous media. The predicted results agree well with the experimental data for MX80 bentonite. A new water retention curve model was developed to predict the suction-saturation behavior of the geological porous media, as a function of suction, effective saturated degree, temperature, porosity, pore-gas pressure, and the rate of saturation degree change with time. The model was verified against experimental data of the FEBEX bentonite, with good agreement between measured and calculated results. A new finite element code (ROLG) was developed for modeling fully coupled thermo-hydro-mechanical processes in geological porous media. The new code was validated against several analytical solutions and experiments, and was applied to simulate the large scale in-situ Canister Retrieval Test (CRT) at Äspö Hard Rock Laboratory, SKB, Sweden, with good agreement between measured and predicted results. The results are useful for performance and safety assessments of radioactive waste repositories. / QC20100720 / THERESA
|
28 |
Fractured Rock Masses as Equivalent Continua - A Numerical StudyMin, Ki-Bok January 2004 (has links)
<p>In this thesis, fractured rock masses are treated asequivalent continua for large-scale analyses of rockengineering projects. Systematic developments are made for thedetermination of equivalent mechanical and hydraulic propertiesof fractured rock masses using a hybrid discrete fracturenetwork - distinct element method (DFN-DEM) approach. Thedetermined equivalent properties are then used for a far-fieldfinite element analysis of the thermo-mechanical impacts on thestress, deformation and permeability of fractured rockssurrounding a hypothetical geological repository of nuclearwaste. The geological data were extracted from the results ofan extensive site investigation programme at Sellafield, UK,conducted by Nirex UK Ltd.</p><p>The scale dependencies of the hydraulic and mechanicalproperties were investigated by using multiple realizations ofthe fracture system geometry with increasing model sizes untilproperly defined hydraulic and mechanical representativeelementary volumes (REVs) were reached. The validity of thesecond order permeability tensor and the fourth-ordermechanical compliance tensor were tested for continuum analysesat larger scales. The REV was determined to be around 5 m formechanical and hydraulic data in this study.</p><p>Analysis of the stress-dependent mechanical and hydraulicproperties shows that the effect of rock stresses is crucial.The elastic moduli increase significantly with the increase ofstress and an empirical equation of stress-dependent elasticmodulus is suggested based on results of numerical experiments.Calculations of the Poisson's ratios suggest greater valuesthan are normally assumed in practice. Depending on the stateof stress, permeability decreases or increases with increasingcompressive stress. Stress-induced flow channeling effect iscaptured by numerical modeling for the first time and detailedmechanisms of shear dilation of fractures are provided. Basedon the numerical experiments, a set of empirical equations wassuggested for the stress-dependent permeability, consideringboth normal deformation and shear dilation of fractures.</p><p>Thermo-mechanical impact on the performance of ahypothetical repository at a far-field scale (5 km by 1 km) wasinvestigated with the stress-dependent equivalent propertiesdetermined at the REV scale. This analysis shows thatmechanical responses vary significantly depending on how themechanical properties were determined. The change ofpermeability due to the thermal loading is, however, notsignificant in this particular case.</p><p>The thesis provides a framework for systematic analysis oflarge-scale engineering applications in fractured rock masses,such as geological repositories of nuclear wastes.</p><p><b>Keyword:</b>Fractured rock masses, Equivalent Continuum,Discrete Fracture Network (DFN), Distinct Element Method (DEM),Finite Element Method (FEM), Nuclear Waste Disposal, CoupledThermo-Hydro-Mechanical Processes</p>
|
29 |
Strength and deformability of fractured rocksNoorian-Bidgoli, Majid January 2014 (has links)
This thesis presents a systematic numerical modeling framework to simulate the stress-deformation and coupled stress-deformation-flow processes by performing uniaxial and biaxial compressive tests on fractured rock models with considering the effects of different loading conditions, different loading directions (anisotropy), and coupled hydro-mechanical processes for evaluating strength and deformability behavior of fractured rocks. By using code UDEC of discrete element method (DEM), a series of numerical experiments were conducted on discrete fracture network models (DFN) at an established representative elementary volume (REV), based on realistic geometrical and mechanical data of fracture systems from field mapping at Sellafield, UK. The results were used to estimate the equivalent Young’s modulus and Poisson’s ratio and to fit the Mohr-Coulomb and Hoek-Brown failure criteria, represented by equivalent material properties defining these two criteria. The results demonstrate that strength and deformation parameters of fractured rocks are dependent on confining pressures, loading directions, water pressure, and mechanical and hydraulic boundary conditions. Fractured rocks behave nonlinearly, represented by their elasto-plastic behavior with a strain hardening trend. Fluid flow analysis in fractured rocks under hydro-mechanical loading conditions show an important impact of water pressure on the strength and deformability parameters of fractured rocks, due to the effective stress phenomenon, but the values of stress and strength reduction may or may not equal to the magnitude of water pressure, due to the influence of fracture system complexity. Stochastic analysis indicates that the strength and deformation properties of fractured rocks have ranges of values instead of fixed values, hence such analyses should be considered especially in cases where there is significant scatter in the rock and fracture parameters. These scientific achievements can improve our understanding of fractured rocks’ hydro-mechanical behavior and are useful for the design of large-scale in-situ experiments with large volumes of fractured rocks, considering coupled stress-deformation-flow processes in engineering practice. / <p>QC 20141111</p>
|
30 |
Knowledge-based approaches to fault diagnosis : the development, implementation, evaluation and comparison of knowledge-based systems, incorporating deep and shallow knowledge, to aid in the diagnosis of faults in complex hydro-mechanical devicesDoherty, Neil Francis January 1992 (has links)
The use of knowledge-based systems to aid in the diagnosis of faults in physical devices has grown considerably since their introduction during the 1970s. The majority of the early knowledge-based systems incorporated shallow knowledge, which sought to define simple cause and effect relationships between a symptom and a fault, that could be encoded as a set of rules. Though such systems enjoyed much success, it was recognised that they suffered from a number of inherent limitations such as inflexibility, inadequate explanation, and difficulties of knowledge elicitation. Many of these limitations can be overcome by developing knowledge-based systems which contain deeper knowledge about the device being diagnosed. Such systems, now generally referred to as model-based systems, have shown much promise, but there has been little evidence to suggest that they have successfully made the transition from the research centre to the workplace. This thesis argues that knowledge-based systems are an appropriate tool for the diagnosis of faults in complex devices, and that both deep and shallow knowledge have their part to play in this process. More specifically this thesis demonstrates how a wide-ranging knowledge-based system for quality assurance, based upon shallow knowledge, can be developed, and implemented. The resultant system, named DIPLOMA, not only diagnoses faults, but additionally provides advice and guidance on the assembly, disassembly, testing, inspection and repair of a highly complex hydro-mechanical device. Additionally it is shown that a highly innovative modelbased system, named MIDAS, can be used to contribute to the provision of diagnostic, explanatory and training facilities for the same hydro-mechanical device. The methods of designing, coding, implementing and evaluating both systems are explored in detail. The successful implementation and evaluation of the DIPLOMA and MIDAS systems has shown that knowledge-based systems are an appropriate tool for the diagnosis of faults in complex hydro-mechanical devices, and that they make a beneficial contribution to the business performance of the host organisation. Furthermore, it has been demonstrated that the most effective and comprehensive knowledge-based approach to fault diagnosis is one which incorporates both deep and shallow knowledge, so that the distinctive advantages of each can be realised in a single application. Finally, the research has provided evidence that the model-based approach to diagnosis is highly flexible, and may, therefore, be an appropriate technique for a wide range of industrial applications.
|
Page generated in 0.0811 seconds