Spelling suggestions: "subject:"hydrofoil goats."" "subject:"hydrofoil board.""
1 |
Development of a high speed planing trimaran with hydrofoil support /Grobler, Barend January 2007 (has links)
Thesis (MScIng)--University of Stellenbosch, 2007. / Bibliography. Also available via the Internet.
|
2 |
Comparative evaluation of a hydrofoil-assisted trimaran /Moolman, Ryno. January 2005 (has links)
Thesis (MScIng)--University of Stellenbosch, 2005. / Bibliography. Also available via the Internet.
|
3 |
The design of a hydrofoil system for sailing catamarans /Loveday, Howard. January 2006 (has links)
Thesis (MScIng)--University of Stellenbosch, 2006. / Bibliography. Also available via the Internet.
|
4 |
A passive suspension system for a hydrofoil supported catamaran /Köpke, Markus. January 2008 (has links)
Thesis (MScIng)--University of Stellenbosch, 2008. / Bibliography. Also available via the Internet.
|
5 |
A comparative analysis of naval hydrofoil and displacement ship design.Grostick, John Larsen January 1975 (has links)
Thesis (Nav.Arch and S.M.)--Massachusetts Institute of Technology, Dept. of Ocean Engineering, 1975. / Includes bibliographical references. / Nav.Arch and S.M.
|
6 |
Fast model controller for a hydrofoil craftKanneman, Thomas A. January 1967 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1967. / Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references.
|
7 |
Speed-power characteristics of hydrofoil vehicles with fully submerged foilsMao, Chunn-Sheng. January 1977 (has links)
Thesis: M.S., Massachusetts Institute of Technology, Department of Ocean Engineering, 1977 / Includes bibliographical references. / by Chunn-Sheng Mao. / M.S. / M.S. Massachusetts Institute of Technology, Department of Ocean Engineering
|
8 |
An application of financial theory in break-even analysis and financial project monitoring of a high-speed novel ferry in the Hong Kong and Macao service /Lee, Yip-Chuen, Anthony. January 1900 (has links)
Thesis (M.B.A.)--University of Hong Kong, 1982.
|
9 |
The design of a hydrofoil system for sailing catamaransLoveday, Howard 03 1900 (has links)
Thesis (MScEng (Mechanical and Mechatronic Engineering))--University of Stellenbosch, 2006. / The main objective of this thesis was to design a hydrofoil system without a trim and ride height control system
and investigate the change in resistance of a representative hull across a typical speed range as a result of the
addition of the hydrofoil system, while retaining adequate stability.
The secondary objectives were as follows: Find a representative hull of sailing catamarans produced in South
Africa, and to establish an appropriate speed range for that hull across which it is to be tested. Test and explain
the drag characteristics of this hull. Find a suitable configuration of lifting foils for this hull that would not
require any form of trim or ride height control to maintain stability throughout the speed range. Test and
compare the resistance characteristics with and without the assistance of lifting foils. Test and explain the effects
of leeway and heel on the total hydrodynamic resistance both with and without lifting foils.
A representative hull (RH1), based on a statistical analysis of sailing catamarans produced in South Africa and
an existing hull design of suitable size, was designed. A speed range was then established (0 – 25 knots) based
on the statistics of the original (existing) design. A scaled model (of RH1) of practical and suitable dimensions
was designed and manufactured, and its characteristics determined through towing tank testing.
A hydrofoil system was then designed and during testing, was adjusted until a stable configuration was found.
This resulted in a canard type configuration, with the front foil at the bow and the main foil between the
daggerboards. Although a stable configuration was achieved, it was noted that any significant perturbation in
the trim of the boat would result in instability and some form of trim control is recommended.
The main objective was achieved. The experimental results concluded that a canard configuration was found to
be stable for the RH1 (foil positioning already mentioned) and the addition of the hydrofoils provided a
significant improvement only above a displacement Froude number of 2, which for our full scale prototype, is
equivalent to approximately 14.2 knots.
This is in agreement with the results of several other research projects that investigated hydrofoil supported
catamarans with semi‐displacement type demi‐hulls. Below displacement Froude number of 2, a significant
increase in total hydrodynamic resistance was observed. Since the speed of sailing craft is dependent on wind speed, there will often be conditions of relatively low boat
speed (below displacement Froude number of 2). So it was recommended that a prototype design would have a
retractable hydrofoil system which could be engaged in suitable conditions (sufficient boat speed).
The effects of leeway and heel on the total hydrodynamic resistance were determined experimentally, but it was
found that these trends were affected by the resulting changes in wave interference resistance. Since wave
interference depended strongly on the hull shape, it was therefore concluded that no universal trends can be
determined regarding the effects of heel and leeway on the total hydrodynamic resistance. These effects were
determined for RH1 and it was shown that these effects are drastically altered by the addition of the lifting foils.
|
10 |
Comparative evaluation of a hydrofoil-assisted trimaranMoolman, Ryno 12 1900 (has links)
Thesis (MScEng (Mechanical and Mechatronic Engineering))--University of Stellenbosch, 2005. / This work is concerned with the design and hydrodynamic aspects of a hydrofoil-assisted
trimaran. A design and configuration of a trimaran is evaluated and the performance of a
hydrofoil-assisted trimaran is effectively compared to the performance of a hydrofoil-assisted
catamaran with similar overall displacement and same speed. The performance of the trimaran
with different outrigger clearances are also evaluated and compared. The hydrodynamic aspects
focuses mainly on the performance and to a lesser extend on the sea-keeping and stability of a
hydrofoil-assisted trimaran. The results were determined by means of experimental testing,
theoretical analysis and numerical analysis. The project was initiated as a result of the success of
the hydrofoil-assisted catamarans and due to the fact that there does not exist a hydrofoil-assisted
trimaran (to the author’s knowledge) where the main focus of the foils is to significantly reduce
the resistance.
A brief history, recent developments and associated advantages regarding trimarans are
discussed. A complete theoretical model is presented to evaluate the lift and drag of the
hydrofoils, as well as, the resistance of the trimaran. The data so obtained is then used to compare
the reliability and feasibility of the numerical and experimental predicted values.
The design of the trimaran and hydrofoil system is explained, together with the problems
associated with the final design of the trimaran. The design of a trimaran is much more
complicated than a catamaran due to more design variables being associated with trimarans. The
selection of the trimaran configuration is done in a logical manner considering stability and
hydrodynamics. However, the hydrofoil-assisted trimaran is closely adapted to the main
dimensions of the comparable hydrofoil-assisted catamaran.
An in-depth discussion of the testing technique used and the problems that are associated with
towing tank testing will facilitate similar tests in the future. The scaling method of Froude was
modified to account for the different sized hulls. The numerical methods are explained, with
emphasis on accuracy, limitations, feasibility and the time required to complete a calculation. The results are presented in an order suggested by the experimental and numerical work carried
out. The resistance, trim and rise/sinkage results are presented with speed for both the trimaran
and catamaran with and without the addition of foils. The addition of the foils supplies results
based on the amount of lift the foils carry and therefore can easily clarify the significant
resistance advantage the foils offer the trimaran and the catamaran evaluated in this project.
The final design and results of the evaluated trimaran are discussed. It is concluded that the
catamaran with similar displacement and speed is still superior to the trimaran, with and without
foils in both cases. The addition of foils to the trimaran does decrease the resistance significantly.
The conclusions regarding these results are presented, together with recommendations for future
work.
|
Page generated in 0.0312 seconds