Spelling suggestions: "subject:"aydrogen full"" "subject:"aydrogen fue""
21 |
Trakční pohon elektromobilu napájený vodíkovým palivovým článkem / Electrocar traction drive supplied with the hydrogen fuel cellPokálený, Jan January 2008 (has links)
The topic of this diploma thesis is a traction drive of electrocar with fuel cell. The drive is supplied with hydrogen fuel cell with power of 2 kW. The traction drive consists of the three-phase DC/AC converter and the asynchronous machine. The main part of this work is a creation of the mathematical model of the traction drive in program Matlab–Simulink.
|
22 |
Poly(arylene ether sulfone)s Carrying Pendant(3-sulfonated) phenyl sulfonyl Groups for use as Proton Exchange MembranesKern, Kimberly E. 23 June 2011 (has links)
No description available.
|
23 |
Fuel Cell for Food Preservation / Bränslecell för bevaring av livsmedelSpencer, Maximilian January 2016 (has links)
As foodstuffs are being produced, transported and stored in greater quantities than ever before in human history and with an alarming amount of food products being lost to spoilage every year, new, environmentally friendly ways of preserving food products are being actively researched and developed in today’s world. Oxygen is a key pathway towards food decay and destruction, due to its dual roles as a source of respiration for the multitude of microorganisms that can cause food spoilage and through direct destruction through oxidation reactions within food products that cause oxidative deterioration. Fuel cells have the theoretical potential to be an energy efficient and environmentally friendly way of preserving food, such as fish, fruit and vegetables. Because of their nature to consume oxygen through the electrochemical reactions that produces their electrical power, they have the potential to be used to reduce localised oxygen content for the storage and transportation of foods, minimising their spoilage, as well as potentially providing electrical energy for other components in potential control systems for the fuel cell. The purpose of this project is to design and build a PEM fuel cell and examine its potential for lowering of oxygen concentrations at the gas output at the cathode. The outcome of these experiments are designed to validate the theoretical capacity of fuel cells to reduce output oxygen concentrations to levels that are able to aid in the preservation of foodstuffs. It is hoped that this study, in conjunction with the researched literature, can be used as a guide for future food shipping and storage methods. The experimental stage of this diploma work was unsatisfactory. The fuel cell was unable to produce a voltage and the reactant gases were unable to flow through the fuel cell due to a design flaw. Therefore the effectiveness of a fuel cell for depletion of oxygen to levels able to preserve food is based on the theoretical basis of the internal PEM fuel cell reactions, as well as studying past literature and patents. If the theoretical ability of the fuel cell is proven, it can be asserted that PEM fuel cells have the potential to be a real contender in the field of food preservation in shipping and storage, as well as offering greater levels of control for supplies for how and when they can ship their product. However this will require more independent research development work on the effects of low oxygen concentrations on a fuel cell operation as well as the preservation effects on a greater variety of foodstuffs. Furthermore, more research is required for more efficient and cheaper fuel cell catalysts or innovative designs are required to avoid concentration losses that arise from oxygen reduction at low oxygen levels.
|
24 |
Contribuciones al modelado y diagnóstico de fallos en PEMFC para mejorar la fiabilidad en sistemas híbridos renovablesAriza Chacón, Helbert Eduardo 15 April 2024 (has links)
[ES] Las pilas de combustibles son dispositivos de un coste elevado y frágiles ante ambientes contaminados o condiciones inadecuadas de operación como: temperaturas extremas o mala gestión del agua producida como residuo de la pila. Para mejorar la fiabilidad de una pila de combustible es necesario diagnosticar de una manera oportuna los fallos y así evitar daños que reduzcan el desempeño del módulo o que lo inhabiliten. Este trabajo busca contribuir al mejoramiento de la fiabilidad de las pilas de combustible de baja temperatura y de esta forma favorecer el uso de hidrógeno en la transición a una energía descarbonizada. Para lograrlo, se realizaron tres actividades principales: modelado de una pila de hidrógeno, ajuste paramétrico del modelo desarrollado y, por último, aplicación de técnicas de diagnóstico de fallos basados en modelos. En el laboratorio de Recursos Energéticos Renovables Distribuidos LabDER de la Universitat Politècnica de València, se estudia el desempeño de sistemas híbridos renovables, incluyendo una línea de hidrógeno, desde la producción, almacenamiento y reconversión en electricidad en una pila de combustible, por tanto, se ha podido validar el modelo.
En un primer momento se identificó la necesidad de un modelo que emplee la temperatura como señal de salida y que retroalimente el sistema, y que tuviese en cuenta señales propias del módulo comercial; sin embargo, el uso de la temperatura como señal y la no linealidad de las ecuaciones físicas, químicas, eléctricas y empleadas, generan un modelo altamente complejo. El ajuste paramétrico del modelo se realizó empleando algoritmos de optimización. Tomando como base al algoritmo de Enjambre de Partículas, se desarrolló una nueva propuesta llamada Scout GA, este algoritmo fue utilizado en otras aplicaciones y pruebas de convergencia para verificar su desempeño frente al fenómeno de estancamiento prematuro y logrando mejorar la precisión y velocidad de convergencia de otras propuestas.
Como resultado de la validación de este modelo, en una primera simulación usando datos reales de funcionamiento correspondientes a 1500 segundos, el error de simulación fue del 2,21% en la señal de tensión y del 1,97% en la señal de temperatura, obteniendo un error medio del 2,09%. En un segundo conjunto de datos de algo más de 2.500 segundos de funcionamiento, el error de simulación fue del 2,40% y del 1,96% para las señales de tensión y temperatura, respectivamente. Se estima que el error medio de simulación para ambas señales y condiciones de funcionamiento similares es inferior al 2,5%.
Buscando mejorar la fiabilidad de la pila, se realizó el trabajo de diagnóstico de fallos, este partió de la simulación de fallos, mediante la modificación de algunas señales de entrada del modelo, los fallos se caracterizaron mediante el tratamiento estadístico de 12 residuos, obteniendo firmas de fallos, que, en su conjunto, formaron una matriz de fallos. Luego, un algoritmo de diagnóstico propuesto permitió identificar y aislar 14 fallos. permitiendo concluir que, el modelo predice eficazmente los fallos de las pilas PEMFC y podría extrapolarse a otras pilas de combustible. / [CA] Les piles de combustibles són dispositius d'un cost elevat i fràgils davant ambients contaminats o condicions inadequades d'operació com: temperatures extremes o dolenta gestió de l'aigua produïda com a residu de la pila. Per a millorar la fiabilitat d'una pila de combustible és necessari diagnosticar d'una manera oportuna les fallades i així evitar danys que reduïsquen l'acompliment del mòdul o que l'inhabiliten. Este treball busca contribuir al millorament de la fiabilitat de les piles de combustible de baixa temperatura i d'esta manera afavorir l'ús d'hidrogen en la transició a una energia *descarbonizada. Per a aconseguir-ho, es van realitzar tres activitats principals: modelatge d'una pila d'hidrogen, ajust paramètric del model desenvolupat i, finalment, aplicació de tècniques de diagnòstic de fallades basades en models. En el laboratori de Recursos Energètics Renovables Distribuïts *LabDER de la Universitat Politècnica de València, s'estudia l'acompliment de sistemes híbrids renovables, incloent-hi una línia d'hidrogen, des de la producció, emmagatzematge i reconversió en electricitat en una pila de combustible, per tant, s'ha pogut validar el model.
En un primer moment es va identificar la necessitat d'un model que empre la temperatura com a senyal d'eixida i que retroalimente el sistema, i que tinguera en compte senyals propis del mòdul comercial, no obstant això, l'ús de la temperatura i la no linealitat de les equacions físiques, químiques, elèctriques i tèrmiques empleades, deriven en un model altament complex. L'ajust paramètric del model de pila de combustible es va realitzar emprant algorismes d'optimització. Prenent com a base a l'algorisme d'Eixam de Partícules, es va desenvolupar una nova proposta anomenada Scout GA, aquest algorisme va ser utilitzat en altres aplicacions i proves de convergència per a verificar el seu acompliment enfront del fenomen d'estancament prematur i aconseguint millorar la precisió i velocitat de convergència d'altres propostes. La simulació i identificació del model té un cost computacional entre 7 i 20 ms per iteració, on es van aconseguir errors de simulació menors al 2.5%
Com a resultat de la validació d'aquest model, en una primera simulació usant dades reals de funcionament corresponents a 1500 segons, l'error de simulació va ser del 2,21% en el senyal de tensió, del 1,97% en el senyal de temperatura i un error mitjà del 2,09%. En un segon conjunt de dades d'una mica més de 2.500 segons de funcionament, l'error de simulació va ser del 2,40% i del 1,96% per als senyals de tensió i temperatura, respectivament. S'estima que l'error mitjà de simulació per a tots dos senyals i condicions de funcionament similars és inferior al 2,5%.
Buscant millorar la fiabilitat de la pila, es va fer el treball de diagnòstic de fallades, aquest va partir de la simulació de fallades, mitjançant la modificació d'alguns senyals d'entrada del model, les fallades es van caracteritzar mitjançant el tractament estadístic de 12 residus, obtenint signatures de fallades, que en el seu conjunt, van formar una matriu de fallades. després un algorisme de diagnòstic proposat, va permetre identificar i aïllar 14 fallades. Permetent concloure que, el model prediu eficaçment les fallades de les piles PEMFC i podria extrapolar-se a altres piles de combustible. / [EN] Fuel cells are high-cost devices that are fragile in contaminated environments or in inadequate operating conditions, such as extreme temperatures or poor water management, produced as battery waste. To improve the reliability of a fuel cell, it is necessary to diagnose failures promptly and thus avoid damage that reduces the module's performance or disables it. This work seeks to contribute to improving the reliability of low-temperature fuel cells and thus promote the use of hydrogen in the transition to decarbonized energy. To achieve this, three main activities were carried out: modeling a hydrogen fuel cell, parametric adjustment of the developed model, and application of model-based fault diagnosis techniques. In the LabDER Distributed Renewable Energy Resources laboratory of the Polytechnic University of Valencia, the performance of renewable hybrid systems is studied, including a hydrogen line, from production, storage, and reconversion into electricity in a fuel cell, therefore, has been able to validate the model.
Initially, a fuel cell model that uses temperature as an in/output signal is required. Also, the model must be able to use the reals signals supplied for the commercial module. However, using temperature and an equation set that includes the non-linearity of the physical, chemical, electrical, and thermal equations resulted in a highly complex model. The parametric adjustment of the fuel cell model was performed using optimization algorithms. Based on the Particle Swarm algorithm, a new proposal called Scout GA was developed. This algorithm was used in other applications and convergence tests to verify its performance against the premature stagnation phenomenon and improved the accuracy and speed of convergence of other proposals. The simulation and identification of the model have a computational cost between 7 and 20 ms per iteration, where simulation errors of less than 2.5% were achieved.
As a result of the validation of this model, in a first simulation using real operating data corresponding to 1,500 seconds, the simulation error was 2.21% for the voltage signal, 1.97% for the temperature signal, and an average error of 2.09%. In a second data set for slightly more than 2500 seconds of operation, the simulation error was 2.40% and 1.96% for the voltage and temperature signals, respectively. The average simulation error for both signals and similar operating conditions is estimated to be less than 2.5%.
To improve the reliability of the stack, the fault diagnosis work was carried out, starting from the simulation of faults by modifying some input signals of the model; the faults were characterized by the statistical treatment of 12 residuals, obtaining fault signatures, which formed a fault matrix. Then, a proposed diagnostic algorithm allowed to identify and isolate 14 faults. Allowing to conclude that the model effectively predicts the PEMFC stack faults and could be extrapolated to other fuel cells. / Ariza Chacón, HE. (2024). Contribuciones al modelado y diagnóstico de fallos en PEMFC para mejorar la fiabilidad en sistemas híbridos renovables [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/203614
|
25 |
Enhancing fuel cell lifetime performance through effective health managementDavies, Benjamin January 2018 (has links)
Hydrogen fuel cells, and notably the polymer electrolyte fuel cell (PEFC), present an important opportunity to reduce greenhouse gas emissions within a range of sectors of society, particularly for transportation and portable products. Despite several decades of research and development, there exist three main hurdles to full commercialisation; namely infrastructure, costs, and durability. This thesis considers the latter of these. The lifetime target for an automotive fuel cell power plant is to survive 5000 hours of usage before significant performance loss; current demonstration projects have only accomplished half of this target, often due to PEFC stack component degradation. Health management techniques have been identified as an opportunity to overcome the durability limitations. By monitoring the PEFC for faulty operation, it is hoped that control actions can be made to restore or maintain performance, and achieve the desired lifetime durability. This thesis presents fault detection and diagnosis approaches with the goal of isolating a range of component degradation modes from within the PEFC construction. Fault detection is achieved through residual analysis against an electrochemical model of healthy stack condition. An expert knowledge-based diagnostic approach is developed for fault isolation. This analysis is enabled through fuzzy logic calculations, which allows for computational reasoning against linguistic terminology and expert understanding of degradation phenomena. An experimental test bench has been utilised to test the health management processes, and demonstrate functionality. Through different steady-state and dynamic loading conditions, including a simulation of automotive application, diagnosis results can be observed for PEFC degradation cases. This research contributes to the areas of reliability analysis and health management of PEFC fuel cells. Established PEFC models have been updated to represent more accurately an application PEFC. The fuzzy logic knowledge-based diagnostic is the greatest novel contribution, with no examples of this application in the literature.
|
26 |
Desenvolvimento e avaliação de um sistema de aquecimento utilizando hidrogênio eletrolítico como combustível. / Development and evaluation of system of heating for cooking using hydrogen eletrolitic as fuel.PEREIRA, Francinaldo de Freitas. 18 October 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-10-18T14:27:42Z
No. of bitstreams: 1
FRANCINALDO DE FREITAS PEREIRA - TESE PPGEP 2005..pdf: 5181579 bytes, checksum: 4b0502fc646549fa86f1d070395e206c (MD5) / Made available in DSpace on 2018-10-18T14:27:42Z (GMT). No. of bitstreams: 1
FRANCINALDO DE FREITAS PEREIRA - TESE PPGEP 2005..pdf: 5181579 bytes, checksum: 4b0502fc646549fa86f1d070395e206c (MD5)
Previous issue date: 2005-08-26 / Capes / O objetivo deste trabalho é estudar o desempenho de um forno tipo mufla adaptado para utilizar hidrogénio eletrolítico como combustível. O sistema de aquecimento poderá ser aplicado em fornos de produção de tijolos, telhas, materiais cerâmicos, e produtos derivados do trigo. Neste sentido o hidrogénio eletrolítico substituiria os combustíveis de origem orgânica, que são os grandes vetores da poluição atmosférica, o hidrogénio poderá ser produzido usando-se energias renováveis como painéis fotovoltaicos e/ou turbinas eólicas. O hidrogénio foi produzido a partir da eletrolise da água em um reator bipolar usando hidróxido de potássio como eletrólito. O consumo de energia e a produção
de hidrogénio foram estimados para diferentes níveis temperaturas de 300°C, 900°C e, 1100°C. / The objective of this work is the study of an oven adapted to use electrolytic hydrogen as fuel. The possible applications are the cooking of clay used in the production of ceramic materiais, bricks and tiles; as well as the production of derived products of the wheat. The electrolytic hydrogen, used as a fuel in replacement of carbonaceous fuels which contribute to the atmospheric pollution, can be produced using renewable energies like photovoltaic solar paneis and/or aeolian turbine power generators. The hydrogen production is done by electrolysis of water which occurs in a bipolar reactor using potassium hydroxide as electrolyte. The energy consumption and the hydrogen production are calculated for different temperatures of 300°C, 900°C and 1100°C range. They are
respectively, 0,9 kWh and 0,131 m3, 2,1 kWh and 0,311 m3 and 3,2 kWh and 0,498 m3.
|
27 |
Kladná elektroda na bázi MnOx pro PEMFC / MnOx based positeve electrode for PEMFCŠmídek, Miroslav January 2011 (has links)
Construed bachelor work features into problems hydrogen fuel articles and survey on low-temperature fuell elements with polymeric electrolyte (PEMFC). Basic sight work is study feature catalyzers on base MnOx on real fuel cell type PEMFC. Exit are then measured characteristic this way creation fuel cell.
|
28 |
FC³ - 2nd Fuel Cell Conference Chemnitz 2022 - Saubere Antriebe. Effizient Produziert.: Wissenschaftliche Beiträge und Präsentationen der zweiten Brennstoffzellenkonferenz am 31. Mai und 01. Juni 2022 in Chemnitzvon Unwerth, Thomas, Drossel, Welf-Guntram 27 May 2022 (has links)
Die zweite Chemnitzer Brennstoffzellenkonferenz wurde vom Innovationscluster HZwo und dem Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik IWU durchgeführt. Ausgewählte Fachbeiträge und Präsentationen werden in Form eines Tagungsbandes veröffentlicht. / The second fuel cell conference was initiated by the innovation cluster HZwo and the Fraunhofer Institute for Machine Tools and Forming Technology. Selected lectures and presentations are published in the conference proceedings.
|
29 |
Analysis of Flame Blow-Out in Turbulent Premixed Ammonia/Hydrogen/Nitrogen - Air CombustionLakshmi Srinivasan (14228177) 08 December 2022 (has links)
<p> </p>
<p>With economies shifting towards net-zero carbon emissions, there is an increased interest in carbon-free energy carriers. Hydrogen is a potential carbon-free energy source. However, it poses several production, infrastructural, and safety challenges. Ammonia blends have been identified as a potential hydrogen carrier and fuel for gas turbine combustion. Partially cracked ammonia mixtures consist of large quantities of hydrogen that help overcome the disadvantages of pure ammonia combustion. The presence of nitrogen in the fuel blends leads to increased NO<sub>x</sub> emissions, and therefore lean premixed combustion is necessary to curb these emissions. Understanding the flame features, precursors, and dynamics of blowout of such blends due to lean conditions is essential for stable operation, lean blowout prediction, and control. </p>
<p><br></p>
<p>In this study, high-fidelity large eddy simulations for turbulent premixed ammonia/hydrogen/nitrogen-air flames in an axisymmetric, unconfined, bluff-body stabilized burner are performed to gain insights into lean blowout dynamics. Partially cracked ammonia (40% NH<sub>3</sub>, 45% H<sub>2</sub>, and 15% N<sub>2</sub>, by volume) is chosen as fuel since its laminar burning velocity is comparable to CH4-air mixtures. A finite rate chemistry model with a detailed chemical kinetic mechanism (36 species and 247 reactions) is utilized to capture characteristics of various species during blowout. A comprehensive study of the flow field and flame structure for a weakly stable burning at an equivalence ratio of 0.5 near the blowout limit is presented. Further, the effects of blowout on the heat release rate, vorticity, distribution of major species, and ignition radicals are studied at four time instances at blowout velocity of 70 m/s. Since limited data is available on turbulent premixed combustion of partially cracked ammonia, such studies are essential in understanding flame behavior and uncertainties with regard to blowout.</p>
|
30 |
Expermental and Modeling Studies on the Generation of Hydrogen Rich Syngas through Oxy-Steam Gasification of BiomassSandeep, Kumar January 2016 (has links) (PDF)
The present work focuses on the study of biomass gasification process for generating hydrogen rich synthetic gas with oxy-steam as reactants using experiments and modeling studies. Utilization of the syngas as a fuel in general applications like fuel cells, Fischer-Tropsch FT) process and production of various chemicals like DME, etc. are being considered to meet the demand for clean energy.
This study comprises of experiments using an open top down draft reactor with oxygen and steam as reactants in the co-current configuration. Apart from the standard gasification performance evaluation; parametric study using equivalence ratio, steam-to-biomass ratio as major variables towards generation of syngas is addressed towards controlling H2/CO ratio. The gasification process is modeled as a packed bed reactor to predict the exit gas composition, propagation rate, bed temperature as a function of input reactants, temperature and mass flux with variation in thermo-physical properties of biomass. These results are compared with the present experiments as well as those in literature.
Experiments are conducted using modified open top downdraft configuration reactor with lock hoppers and provision for oxy-steam injection, and the exit gas is connected to the cooling and cleaning system. The fully instrumented system is used to measure bed temperatures, steam and exit gas temperature, pressures at various locations, flow rates of fuel, reactants and product gas along with the gas composition. Preliminary investigations focused on using air as the reactant and towards establishing the packed bed performance by comparing with the experimental results from the literature and extended the study to O2-N2 mixtures. The study focuses on determining the propagation rate of the flame front in the packed bed reactor for various operating conditions. O2 is varied between 20-100% (vol.) in a mixture of O2-N2 to study the effect of O2 fraction on flame propagation rate and biomass conversion. With the increase in O2 fraction, the propagation rates are found to be very high and reaching over 10 mm/s, resulting in incomplete pyrolysis and poor biomass conversion. The flame propagation rate is found to vary with oxygen volume fraction as XO22.5, and stable operation is achieved with O2 fraction below 30%.
Towards introducing H2O as a reactant for enhancing the hydrogen content in the syngas and also to reduce the propagation rates at higher ER, wet biomass is used. Stable operating conditions are achieved using wet biomass with moisture-to-biomass (H2O:Biomass) ratio between 0.6 to 1.1 (mass basis) and H2 yield up to 63 g/kg of dry biomass amounting to 33% volume fraction in the syngas. Identifying the limitation on the hydrogen yield and the criticality of achieving high quality gas; oxy-steam mixture is introduced as reactants with dry biomass as fuel. An electric boiler along with a superheater is used to generate superheated steam upto 700 K and pressure in the range of 0.4 MPa. Steam-to-biomass ratio (SBR) and ER is varied with towards generating hydrogen rich syngas with sustained continuous operation of oxy-steam gasification of dry biomass. The results are analysed with the variation of SBR for flame propagation rates, calorific value of product syngas, energy efficiency, H2 yield per kg of biomass and H2/CO ratio.
Hydrogen yield of 104 g per kg of dry casuarina wood is achieved amounting to 50.5% volume fraction in dry syngas through oxy-steam gasification process compared to air gasification hydrogen yield of about 40 g per kg of fuel and 20% volume fraction. First and second law analysis for energy and exergy efficiency evaluation has been performed on the experimental results and compared with air gasification. Individual components of the energy input and output are analysed and discussed. H2 yield is found to increase with SBR with the reduction in energy density of syngas and also energy efficiency. Highest energy efficiency of 80.3% has been achieved at SBR of 0.75 (on molar basis) with H2 yield of 66 g/kg of biomass and LHV of 8.9 MJ/Nm3; whereas H2 yield of 104 g/kg of biomass is achieved at SBR of 2.7 with the lower efficiency of 65.6% and LHV of 7.4 MJ/Nm3. The energy density of the syngas achieved in the present study is roughly double compared to the LHV of typical product gas with air gasification. Elemental mass balance technique has been employed to identify carbon boundary at an SBR of 1.5. Controlling parameters for arriving at the desired H2/CO ratio in the product syngas have been identified.
Optimum process parameters (ER and SBR) has been identified through experimental studies for sustained continuous oxy-steam gasification process, maximizing H2 yield, controlling the H2/CO ratio, high energy efficiency and high energy density in the product syngas. Increase in ER with SBR is required to compensate the reduction in O2 fraction in oxy-steam mixture and to maintain the desired bed temperature in the combustion zone. In the range of SBR of 0.75 to 2.7, ER requirement increases from 0.18 to 0.3. The sustained continuous operation is possible upto SBR of 1.5, till the carbon boundary is reached. Operating at high SBR is required for high H2 yield but sustained highest H2 yield is obtained as SBR of 1.5. H2/CO ratio in the syngas increases from 1.5 to 4 with the SBR and depending on the requirement of the downstream process (eg., FT synthesis), suitable SBR and ER combination is suggested. To obtain high energy density in syngas and high energy efficiency, operations at lower SBR is recommended.
The modeling study is the extension of the work carried by Dasappa (1999) by incorporating wood pyrolysis model into the single particle and volatile combustion for the packed bed of particles. The packed bed reactor model comprises of array of single particles stacked in a vertical bed that deals with the detailed reaction rates along with the porous char spheres and thermo-physical phenomenon governed by the mass, species and energy conservation equations.
Towards validating the pyrolysis and single particle conversion process, separate analysis and parametric study addressing the effects of thermo-physical parameters like particle size, density and thermal conductivity under varying conditions have been studied and compared with the available results from literature. It has been found that the devolatilisation time of particle (tc) follows closely the relationship with the particle diameter (d), thermal conductivity (k), density () and temperature (T) as:
The complete combustion of a single particle flaming pyrolysis and char combustion has been studied and validated with the experimental results. For the reactor modeling, energy, mass and species conservation equations in the axial flow direction formulate the governing equations coupled to the detailed single particle analysis. Gas phase reactions involving combustion of volatiles and water gas shift reaction are solved in the packed bed. The model results are compared with the experimental results from wood gasification system with respect to the propagation rate, conversion times, exit gas composition and other bed parameters like conversion, peak bed temperatures, etc.
The propagation rates compare well with experimental data over a range of oxygen concentration in the O2- N2 mixture, with a peak at 10 mm/s for 100 % O2. In the case of oxy-steam gasification of dry biomass, the results clearly suggest that the char conversion is an important component contributing to the bed movement and hence the overall effective propagation rate is an important parameter for co-current reactors. This is further analyzed using the carbon boundary points based on elemental balance technique.
The model predictions for the exit gas composition from the oxy-steam gasification matches well with the experimental results over a wide range of equivalence ratio and steam to biomass ratio. The output gas composition and propagation rates are found to be a direct consequence of input mass flux and O2 fraction in oxy-steam mixture.
The present study comprehensively addresses the oxy-steam gasification towards generating hydrogen rich syngas using experimental and model studies. The study also arrives at the parameters for design consideration towards operating an oxy-steam biomass gasification system. The following flow chart provides the overall aspects that are covered in the thesis chapter wise.
|
Page generated in 0.0758 seconds