• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 283
  • 59
  • 55
  • 39
  • 10
  • 9
  • 7
  • 5
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 594
  • 169
  • 97
  • 81
  • 62
  • 59
  • 52
  • 52
  • 52
  • 52
  • 51
  • 49
  • 46
  • 45
  • 45
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
371

Synthesis of Bis(2,2,2-Trifluoroethyl) (Z)-Vinylphosphonates

Rizzo, Lee A. 24 September 2013 (has links)
No description available.
372

Development of Copper Catalysts for the Reduction of Polar Bonds

Chakraborty, Arundhoti January 2016 (has links)
No description available.
373

Effect of Phase Composition of Tungsten Carbide on its Catalytic Activity for Toluene Hydrogenation

Rane, Aditya 20 October 2021 (has links) (PDF)
Commercially important hydrogenation reactions make use of precious noble metal catalysts which are becoming increasingly scarce, and the search for capable alternative catalysts prevails. Transition metal carbides of group IV-VI metals show similar catalytic behavior to platinum and are $103/kg lower in price than the precious metal catalysts. Tungsten carbide, studied in this work, can form in different stoichiometries and phase compositions depending upon synthesis methods. Synthesis of high surface area tungsten carbide with control over its phase composition remains a challenge currently. In this work, the novel isothermal synthesis method of tungsten carbide (WC, W2C) in a CH4/H2 carburization atmosphere with synthesis temperature and presence or absence of a silica support in the catalyst precursor (WO3) as process variables was investigated. The amounts of CO and H2O formed during synthesis corresponded to the amount of oxygen in the WO3 precursor. The catalysts were further characterized by X-ray diffraction to determine phase composition and crystallite size, by scanning electron microscopy to determine morphology, and by CO chemisorption to determine metallic surface area. X-ray diffraction analysis indicated the carbide catalysts to contain W2C, WC, and metallic W phases. The use of a silica-supported precursor favored the formation of a nearly phase pure, high surface area W2C rich catalyst whereas high synthesis temperature and absence of silica precursor favored formation of a low surface area WC rich catalyst. Further, the catalysts were tested for steady state activity at a W/F (weight catalyst/toluene feed rate) of 0.20-0.30 h-1, addition of H2 to a total pressure of 21 bar absolute and 250 °C, and the effect of phase composition and surface area on the activity was studied. This work resulted in the successful synthesis of 4 tungsten carbide catalysts with varying phase compositions and surface areas and correlation of their compositions and surface areas with their corresponding toluene hydrogenation activities.
374

Design and modification of rhodium and iridium N-heterocyclic carbene complexes for asymmetric transfer hydrogenation and antimicrobial activity

Bernier, Chad Michael 07 January 2021 (has links)
The two projects described in this dissertation demonstrate the wide utility of noble metal N-heterocyclic carbene (NHC) complexes. The first project details the design of iridium NHC amino acid complexes for asymmetric transfer hydrogenation (ATH) of prochiral ketones. Iridium(I) bis-NHC complexes were found to undergo oxidative addition with a variety of alpha-amino acids, generating chiral iridium(III) complexes of the form Ir(NHC)2(aa)(H)(X) (aa = amino acid, X = halide). The complexes were screened for ATH of aryl and alkyl ketones, and optimization studies found enantioselectivity in this system was highly sensitive to the reaction temperature, NHC ligand, and amino acid. Incorporation of secondary amino acids was essential to enantioselectivity. Aryl ketones were reduced in high conversion and enantioselectivity when employing the Ir(IMe)2(L-Pro)(H)(I) catalyst in isopropyl alcohol, in some cases giving over 90% ee of the alcohol products. Density functional theory calculations were conducted in order to gain insight into the active catalytic species, and the results suggest that the high enantioselectivity of this system primarily arises from steric effects. The second project details the design of rhodium and iridium NHC piano-stool complexes featuring derivatized tetramethylcyclopentadienyl ligands (Cp*R, R = alkyl or aryl substituent) for antimicrobial applications. Complexes of the form (Cp*R)M(NHC)Cl2 (M = Rh or Ir) were synthesized by transmetallation of the NHC ligand using silver(I) oxide in the presence of the desired noble metal Cp*R dimer. The complexes were screened for biological activity against various bacteria, yeast, and fungi. Many of these compounds were highly active against Mycobacterium smegmatis, displaying minimum inhibitory concentrations (MICs) as low at 0.25 microgram per mL. Analysis of structure-activity relationships found that incorporation of the NHC ligand greatly enhances the antimicrobial properties of rhodium and iridium piano-stool complexes, more so than previously investigated diamine, amino acid, or beta-diketonato ligands. Cytotoxicity studies on one of the rhodium NHC complexes showed this compound was nontoxic towards mammalian cells at low concentrations, which strengthens the potential of these types of compounds as viable drug candidates. / Doctor of Philosophy / This dissertation describes two practical applications of a series of complexes featuring the noble metals rhodium and iridium. In all of these complexes, the metal center is bonded to one or two groups known as N-heterocyclic carbenes (NHCs). The most common structural variant of NHCs are five-membered rings. The metal is usually bonded to a carbon atom on these rings, which is flanked by two nitrogen atoms. Noble metal complexes containing NHCs are widely investigated in contemporary chemical literature for a variety of reactions, primarily because noble metals form exceptionally strong bonds with NHCs, making these complexes very stable. N-Heterocyclic carbene compounds are also fairly easy to synthesize and structurally modify, which allows fine-tuning for specific applications. The first project in this dissertation employed iridium NHC amino acid complexes for the selective production of alcohols, meaning only one structure of the alcohol product is favorably generated. This is an important transformation in the chemical and pharmaceutical industries, which often require the synthesis of highly pure products. These complexes were found to be quite successful for this application on a range of model substrates, in some cases generating as high as 95% of one alcohol product over the other. Product selectivity was found to depend on the specific structure of the NHC compound. The second project investigated the antimicrobial properties of rhodium and iridium NHC complexes. In recent years, the growing threat of antimicrobial resistance against traditional pharmaceuticals has led to an interest in the development of metal-based drugs, which may allow for metal-specific mechanisms of drug action that are not possible for commonly employed antimicrobial agents. These NHC complexes were screened for biological activity against various bacteria, yeast, and fungi. Many of the complexes displayed high activity against Mycobacterium smegmatis, comparable to those displayed by other clinical drugs such as ampicillin or streptomycin. These results were highly encouraging, as Mycobacterium smegmatis often serves as a model to study other mycobacteria.
375

Structure Sensitivity of Alkanes Hydrogenolysis and Alkynes Hydrogenation on Supported Ir Catalysts

Zhang, Xiwen 23 March 2021 (has links)
In many catalytic systems, the activity and selectivity of supported metal catalysts or extended metal surface catalysts would be affected by the metal surface structure, and this phenomenon is called structure sensitivity. Generally, structure sensitivity is led by the change of geometric and electronic properties of the metal on the surface. The variation of metal nuclearity and metal-support interactions are effective ways to change the geometric and electronic properties of the supported metal catalyst, leading to different types of the active sites exposing on the support that would take effect on catalyzing the reaction. In this work, a series of supported Ir catalysts (on MgAl2O4 and SiO2) with different particle sizes less than 3 nm were utilized for hydrogenolysis of n-butane and ethane to study the structure sensitivity as well as the potential reaction pathways. The results indicate that the activity of n-butane hydrogenolysis increases as Ir particle size increases in the small particle size range (0.7–1.4 nm) and then drops when the Ir particle size further increases and the Ir single atoms might be inactive for hydrogenolysis after the post-reaction analysis. The selectivity of n-butane hydrogenolysis is dominated by central and one terminal C–C bond cleavage on the n-butane molecules at low temperature range. The selectivity to central C–C bond cleavage is highly dependent on the size of Ir and increases with a decrease in particle size down to ~1.4 nm but remains constant with further decrease in size. The hydrogenolysis of ethane shows a similar trend in the small size range but the activity is much lower than n-butane, which supports the low level of series reaction pathway in the case of n-butane hydrogenolysis. In addition to Ir nuclearity, the effect of electronic properties was also studied on another series of Ir catalysts supported on ZnAl2O4, in which zinc replace the magnesium within the same spinel structure. The characterization results including HAADF-STEM and volumetric CO chemisorption show the difference of Ir nuclearity in the subnanometer regime and nanoparticles (~1.4 nm), while XPS and DRIFTS indicate the difference of electronic properties from metal-support interaction on the two Ir catalysts with the same nuclearity but reduced at different temperatures. Acetylene hydrogenation is structure sensitive on Ir/ZnAl2O4 catalysts and the activity and selectivity are mainly determined by Ir nuclearity instead of the difference in electronic properties. The Ir single atoms and subnanometer clusters are more selective to the target product of C2H4 but less active than large Ir nanoparticles as there might be more π-bonded adsorption than di-σ bonded adsorption for C2H2 on the Ir single atoms and subnanometer clusters. / Doctor of Philosophy / The supported metal catalyst is a kind of effective substance that could help increase the reaction rate when being properly utilized in the reaction. From the industry point of view, the best thing is to maximize the catalyst productivity and minimize the expense so that the economic benefit could be magnified. The catalyst effectiveness in a certain reaction might be different when the surface structure of the catalyst varies. Usually, only the fraction of the surface metals could take effect. As the particle size of the catalyst decreases, the fraction of the surface atoms that contain active sites drastically changes, leading to a different catalytic performance and probably lower cost with improved efficiency for metal utilization. Therefore, it is very significant for the researchers to study the reaction structure sensitivity on the same series of catalysts with different particle sizes. Also, by understanding the reaction mechanism and fundamentals of the catalytic system, it would be possible for the researchers to rationally design the catalysts aiming at higher efficiency and lower cost. In this work, the reaction of hydrogenolysis that cleaves the C–C bonds within the alkanes molecules was studied on the supported Ir catalysts (Ir/MgAl2O4 and Ir/SiO2) with different particle sizes ranging from mostly single atoms, subnanometer clusters to nanoparticles. For n-butane hydrogenolysis, it is found that the selectivity to the target product of ethane is weakly dependent on particle size when smaller than 1.4 nm but decreases as the size further increases. Meantime, the activity is highest on the catalyst with surface-average particle size of 1.4 nm. Therefore, Ir size of ~1.4 nm is optimum for activity and selectivity to ethane. The series of Ir/ZnAl2O4 catalysts was tested for structure sensitivity by another probe reaction, semi-hydrogenation of acetylene. The adsorbed acetylene molecules could be hydrogenated by adding two hydrogen to form the adsorbed ethylene before desorption or further hydrogenation to form ethane. Our results show the Ir single atoms and subnanometer clusters are more selective to the target product of ethylene but less active than the large nanoparticles. With the understanding of structure sensitivity, researchers are able to rationally design the catalysts based on their necessity for certain reactions.
376

Haloethane Reactions over the Chromia Cr₂O₃ (1012) Surface

Ma, Qiang 01 September 2005 (has links)
Ethyl iodide and ethyl chloride have been used as reactants to produce ethyl fragments on the stoichiometric α-Cr₂O₃ (1012) surface by means of thermal dissociation. Ethyl iodide is dissociated giving iodine adatoms and ethyl fragments bound to surface Cr cation sites, while ethyl chloride is dissociated giving chlorine adatoms and ethyl fragments. No oxygenated products are observed in thermal desorption, suggesting the 3-coordinate lattice oxygen on the stoichiometric α-Cr₂O₃ (1012) surface is very stable, and no nucleophilic attack occurs at the carbon atoms on surface ethyl fragments. For both reactants, the only reaction products observed are ethylene gas (CH₂=CH₂), ethane gas (CH₃-CH₃), hydrogen gas (H₂) and halogen adatoms (Cl<sub>ads</sub> or I<sub>ads</sub>). In thermal desorption experiments, all the gas phase products from ethyl chloride are produced in a reaction-limited, high temperature desorption feature attributed to a rate limiting β-hydride elimination from surface ethyl fragments. Similar product desorption features are observed for the reaction of ethyl iodide. However, the reaction of ethyl iodide also produces ethylene and ethane via a low temperature, desorption-limited reaction channel. It is postulated that I adatoms produced in the reaction of ethyl iodide thermal desorption might somehow promote a low temperature route to products that Cl adatoms do not. / Master of Science
377

Heterogeneous Metal Catalysts: From Single Atoms to Nanoclusters and Nanoparticles

Liu, Lichen 02 October 2019 (has links)
Tesis por compendio / Las especies de metal con diferentes tamaños (átomos individuales, nanocristales y nanopartículas) muestran un comportamiento catalítico diferente para diversas reacciones catalíticas heterogéneas. Se ha demostrado en la bibliografía que muchos factores que incluyen el tamaño de partícula, la forma, la composición química, la interacción metal-soporte, la interacción metal-reactivo / disolvente, pueden tener influencias significativas sobre las propiedades catalíticas de los catalizadores metálicos. Los desarrollos recientes de metodologías de síntesis bien controladas y herramientas de caracterización avanzada permiten correlacionar las relaciones a nivel molecular. En esta tesis, he llevado a cabo estudios sobre catalizadores metálicos desde átomos individuales hasta nanoclusters y nanopartículas. Al desarrollar nuevas metodologías de síntesis, el tamaño de las especies metálicas puede modularse y usarse como catalizadores modelo para estudiar el efecto del tamaño sobre el comportamiento catalítico de los catalizadores metálicos para la oxidación del CO, la hidrogenación selectiva, la oxidación selectiva y la fotocatálisis. Se ha encontrado que, los átomos metálicos dispersados por separado y los grupos subnanométricos de metal pueden aglomerarse en nanoclusters o nanopartículas más grandes en condiciones de reacción. Para mejorar la estabilidad de los catalizadores subnanométricos de metal, he desarrollado una nueva estrategia para la generación de átomos individuales y clusters en zeolitas. Esas especies subnanométricas de metales son estables en tratamientos de oxidación-reducción a 550 oC. Siguiendo esta nueva metodología de síntesis, este nuevo tipo de materiales puede servir como catalizador modelo para estudiar la evolución de especies subnanométricas de metales en condiciones de reacción. La transformación estructural de las especies subnanométricas de Pt ha sido estudiada mediante microscopía electrónica de transmisión in situ. Se ha demostrado que el tamaño de las especies de Pt está fuertemente relacionado con las condiciones de reacción, que proporcionan importantes conocimientos para comprender el comportamiento de los catalizadores de metales subnanométricos en condiciones de reacción. En la otra línea de investigación para catalizadores de metales no nobles, he desarrollado varias estrategias generales para obtener catalizadores de metales no nobles, ya sea soportados sobre óxidos metálicos o protegidos por capas delgadas de carbono. Estos materiales muestran un rendimiento excelente para varias reacciones importantes, como la hidrogenación quimioselectiva de nitroarenos, incluso cuando se comparan con los catalizadores de metales nobles convencionales. En algunos casos, los catalizadores de metales no nobles pueden incluso alcanzar selectividades para productos inviables que no ha sido posible conseguir en catalizadores de metales nobles convencionales, que es causado por la diferente ruta de reacción en catalizadores de metales no nobles. Sin embargo, la espectroscopía fotoelectrónica de rayos X a presión ambiente ha revelado que la irradiación de la luz puede modular la selectividad a los alcoholes y los hidrocarburos C2 +, lo que abre una nueva posibilidad para ajustar el comportamiento catalítico de los catalizadores metálicos. Con base en los trabajos anteriores de diferentes aspectos relacionados con catalizadores metálicos heterogéneos, las perspectivas sobre las direcciones futuras hacia una mejor comprensión del comportamiento catalítico de diferentes entidades metálicas (átomos individuales, nanoagrupamientos y nanopartículas) de una manera unificadora también se han dado en esta tesis. / Les espècies metàl·liques de diferents dimensions (àtoms individuals, nanoclusters i nanopartícules) mostren diferents comportaments catalítics per a diverses reaccions catalítiques heterogènies. S'ha demostrat a la literatura que, molts factors que inclouen la mida de la partícula, la forma, la composició química, la interacció amb el suport metàl·lic, la reacció metàl·lica i la interacció amb dissolvents poden tenir influències significatives sobre les propietats catalítiques dels catalitzadors metàl·lics. Els desenvolupaments recents de metodologies de síntesi ben controlades i eines de caracterització avançada permeten relacionar les relacions a nivell molecular. En aquesta tesi, he realitzat estudis sobre catalitzadors metàl·lics d'àtoms únics a nanoclústers i nanopartícules. Mitjançant el desenvolupament de noves metodologies de síntesi, la mida de les espècies metàl·liques es pot modular i utilitzar com a catalitzadors model per estudiar l'efecte de mida sobre el comportament catalític dels catalitzadors metàl·lics per a l'oxidació de CO, hidrogenació selectiva, oxidació selectiva i fotocatàlisi. S'ha trobat que, els àtoms metàl·lics dispersos individualment i els clústers metàl·lics subnanomètrics poden aglomerar-se en nanoclústeres o nanopartícules més grans en condicions de reacció. Per millorar l'estabilitat dels catalitzadors subnanomètrics de metall, he desenvolupat una nova estratègia per a la generació d'àtoms i racimos en zeolites. Aquestes espècies metàl·liques subnanométricas són estables en tractaments de reducció d'oxidació a 550 oC. Després d'aquesta nova metodologia de síntesi, aquest nou tipus de materials poden servir com a model de catalitzador per estudiar l'evolució de les espècies metàl·liques subnanométricas en condicions de reacció. La transformació estructural de l'espècie Pn subnanométrica ha estat estudiada per microscòpia electrònica de transmissió in situ. S'ha demostrat que la mida de les espècies de Pt està fortament relacionada amb les condicions de reacció, que proporcionen idees importants per comprendre el comportament dels catalitzadors de subnanometria en condicions de reacció. En l'altra línia de recerca dels catalitzadors de metalls no nobles, he desenvolupat diverses estratègies generals per obtenir catalizadors de metalls no nobles recolzats en òxids metàl·lics o protegits per capes de carboni primes. Aquests materials presenten un excel·lent rendiment per a diverses reaccions importants, com la hidrogenació quimioelectiva de nitroarenes, fins i tot quan es comparen amb els catalitzadors convencionals de metall noble. En alguns casos, els catalitzadors de metalls no nobles poden fins i tot aconseguir selectivitats a productes no factibles que no s'han pogut assolir en catalitzadors de metall noble convencionals, que es deuen a la via de reacció diferent en catalitzadors de metalls no nobles. No obstant això, s'ha observat una espectroscòpia de fotoelèctria de raigs X amb pressió d'atmosfera que la irradiació lleugera pot modular la selectivitat als alcohols i hidrocarburs C2 +, la qual cosa obre una nova possibilitat per sintonitzar el comportament catalític dels catalitzadors metàl·lics. A partir d'aquests treballs de diferents aspectes relacionats amb els catalitzadors metàl·lics heterogenis, també s'ha donat en aquesta tesi perspectives sobre les futures orientacions cap a una millor comprensió del comportament catalític de diferents entitats metàl·liques (àtoms individuals, nanoclústers i nanopartícules). / Metal species with different size (single atoms, nanoclusters and nanoparticles) show different catalytic behavior for various heterogeneous catalytic reactions. It has been shown in the literature that, many factors including the particle size, shape, chemical composition, metal-support interaction, metal-reactant/solvent interaction, can have significant influences on the catalytic properties of metal catalysts. The recent developments of well-controlled synthesis methodologies and advanced characterization tools allow to correlate the relationships at molecular level. In this thesis, I have carried out studies on metal catalysts from single atoms to nanoclusters and nanoparticles. By developing new synthesis methodologies, the size of metal species can be modulated and used as model catalysts to study the size effect on the catalytic behavior of metal catalysts for CO oxidation, selective hydrogenation, selective oxidation and photocatalysis. It has been found that, singly dispersed metal atoms and subnanometric metal clusters may agglomerate into larger nanoclusters or nanoparticles under reaction conditions. To improve the stability of subnanometric metal catalysts, I have developed a new strategy for the generation of single atoms and clusters in zeolites. Those subnanometric metal species are stable in oxidation-reduction treatments at 550 oC. Following this new synthesis methodology, this new type of materials can serve as model catalyst to study the evolution of subnanometric metal species under reaction conditions. The structural transformation of subnanometric Pt species has been studied by in situ transmission electron microscopy. It has been shown that the size of Pt species is strongly related with the reaction conditions, which provide important insights for understanding the behavior of subnanometric metal catalysts under reaction conditions. In the other research line for non-noble metal catalysts, I have developed several general strategies to obtain non-noble metal catalysts either supported on metal oxides or protected by thin carbon layers. These materials show excellent performance for several important reactions, such as chemoselective hydrogenation of nitroarenes, even when compared with conventional noble metal catalysts. In some cases, non-noble metal catalysts can even achieve selectivities to unfeasible products which has not been possible to achieve on conventional noble metal catalysts, which is caused by the different reaction pathway on non-noble metal catalysts. Nevertheless, it has been revealed by ambient-pressure X-ray photoelectron spectroscopy that light irradiation can modulate the selectivity to alcohols and C2+ hydrocarbons, which opens a new possibility for tuning the catalytic behavior of metal catalysts. Based on the above works from different aspects related with heterogeneous metal catalysts, perspectives on the future directions towards better understanding on the catalytic behavior of different metal entities (single atoms, nanoclusters and nanoparticles) in a unifying manner have also been given in this thesis. / Liu, L. (2018). Heterogeneous Metal Catalysts: From Single Atoms to Nanoclusters and Nanoparticles [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/113169 / Compendio
378

Quantification and Tuning of Surface Oxygen Vacancies for the Hydrogenation of CO2 on Indium Oxide Catalysts

Baumgarten, Robert, Naumann d’Alnoncourt, Raoul, Lohr, Stephen, Gioria, Esteban, Frei, Elias, Fako, Edvin, De, Sandip, Boscagli, Chiara, Drieß, Matthias, Schunk, Stephan, Rosowski, Frank 28 November 2024 (has links)
The direct hydrogenation of CO2 to methanol is an attractive approach to employ the greenhouse gas as a chemical feedstock. However, the commercial copper catalyst, used for methanol synthesis from CO-rich syngas, suffers from deactivation at elevated CO2 partial pressure. An emerging alternative is represented by In2O3 as it withstands the hydrothermal conditions induced by the reverse water-gas shift reaction. The active sites for the adsorption of CO2 and the subsequent conversion into methanol were shown to be oxygen vacancies on the surface of In2O3. In this study, N2O was utilized as a probe molecule to quantify the number of vacancies on indium oxide catalysts. The number of inserted oxygen atoms could be correlated to the respective CO2 hydrogenation activity. Furthermore, the atomic efficiency of indium was enhanced by applying atomic layer deposition of indium oxide on ZrO2.
379

Design and Modification of Half-Sandwich Ir(III), Rh(III), and Ru(II) Amino Acid Complexes for Application in Asymmetric Transfer Hydrogenation Reactions

Morris, David 28 January 2015 (has links)
This dissertation describes the design and synthesis of a series of half-sandwich amino acid complexes of the form), (aa = α-amino carboxylate), and their utility as asymmetric transfer hydrogenation catalysts of ketones. Variation of the metal center, the n-ring, and the aa was used to tune these systems for specific sets of ketones. Upon reaction with homochiral]s, the ligand environment in all of these complexes is pseudotetrahedral, leading to stereogenic metal ions (SM, RM). The addition of another stereogenic center from the amino acid ligand (the carbon, RC or SC;glycine) gives rise to two pairs of diastereomeric complexes. / Ph. D.
380

Investigating Interfaces between Heterogeneous Catalysts and Metal-Organic Frameworks for Catalytic Selectivity Control:

Lo, Wei-Shang January 2022 (has links)
Thesis advisor: Matthias M. Waegele / Depositing metal-organic frameworks (MOFs) on the surfaces of metal nanoparticles (NPs) to enhance catalytic selectivity has recently attracted great attention; however, a solid understanding of how the NP-MOF interface promotes catalytic selectivity is lacking. In this thesis, we have conducted three fundamental studies and further applied the knowledge to other types of catalysts using enzymes. The first part of this thesis focuses on understanding the NP-MOF interfacial structures and their impact on catalytic performance. We have systematically probed the NP-MOF interface generated by three commonly used approaches by IR and Raman spectroscopy. We have revealed significant differences in interfacial chemical interactions between them, and have found that these differences in interfacial structure dramatically impact selectivity. For example, the interface generated by the coating approach contains trapped capping agents. This trapped capping agent reduces crotyl alcohol selectivity for the hydrogenation of crotonaldehyde. The second part of this thesis focuses on addressing the trapped capping agents at the NP-MOF interface. We developed an approach to creating a direct NP-MOF interface by utilizing weakly adsorbed capping agents during the MOF coating process. Their dynamic nature allows for their gradual dissociation from the NP surface with the assistance of the organic MOF linkers. Thus, direct chemical interactions can be built between NP and MOF, generating a clean and well-defined interface. Direct evidence on capping agent dissociation and formation of chemical interactions was obtained by Raman and IR spectroscopy. Combined with transmission electron microscopy and X-ray diffraction, we have revealed the relative orientation and facet alignment at the NP-MOF interface. The third part of this thesis investigates how various MOF components affect the selectivity of hydrogenation reactions catalyzed at the MOF-NP interface. We found that the replacement of Zr-oxo nodes with Ce-oxo nodes yields the highest selectivity for cinnamyl alcohol (~87%), whereas the functionalization of the terephthalic acid linker with -OH, CH3, -NO2 and NH2 groups only moderately modulates the selectivity relative to the Zr-UiO-66 (~58%). Reaction kinetics studies demonstrate that coating Pt NPs with Ce-UiO-66 increases the rate of C=O hydrogenation, which infrared spectroscopic observations suggest is due to the interaction of the C=O group with the Ce-oxo node. This work highlights the critical role of metal-oxo nodes in regulating the catalytic selectivity of metal NPs in specific reactions. The fourth part of this thesis extends the interface control to other catalysts involving enzymes. We compared the interfacial interactions of catalase in solid and hollow MOF microcrystals. The solid sample with confined catalase was prepared through a reported method. The hollow sample was generated by hollowing the MOFs crystal, sealing freestanding enzymes in the central cavities of the hollow MOF. By monitoring this hollowing process, we observed that the enzymes gradually changed from a confined form to a freestanding form. The freestanding enzymes in the hollow MOFs show higher activity in the decomposition of hydrogen peroxide, attributed to their lesser chemical interactions and confinement. This study highlights the importance of the freestanding state for the biological function of encapsulated enzymes. Taken together, the four sections in this thesis establish design rules for refining MOF-based catalyst design. / Thesis (PhD) — Boston College, 2022. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.

Page generated in 0.1563 seconds