• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 11
  • 8
  • 3
  • 3
  • Tagged with
  • 55
  • 55
  • 55
  • 13
  • 13
  • 10
  • 9
  • 9
  • 9
  • 9
  • 8
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Tuning of single semiconductor quantum dots and their host structures via strain and in situ laser processing

Kumar, Santosh 15 August 2013 (has links)
Single self-assembled semiconductor quantum dots (QDs) are able to emit single-photons and entangled-photons pairs. They are therefore considered as potential candidate building blocks for quantum information processing (QIP) and communication. To exploit them fully, the ability to precisely control their optical properties is needed due to several reasons. For example, the stochastic nature of their growth ends up with only little probability of finding any two or more QDs emitting indistinguishable photons. These are required for two-photon quantum interference (partial Bell-state measurement), which lies at the heart of linear optics QIP. Also, most of the as-grown QDs do not fulfil the symmetries required for generation of entangled-photon pairs. Additionally, tuning is required to establish completely new systems, for example, 87Rb atomic-vapors based hybrid semiconductoratomic (HSA) interface or QDs with significant heavy-hole (HH)-light-hole (LH) mixings. The former paves a way towards quantum memories and the latter makes the optical control of hole spins much easier required for spin- based QIP. This work focuses on the optical properties of a new type of QDs optimized for HSA experiments and their broadband tuning using strain. It was created by integrating the membranes, containing QDs, onto relaxor-ferroelectric actuators and was quantified with a spatial resolution of ~1 µm by combining measurements of the µ-photoluminescence of the regions surrounding the QDs and dedicated modeling. The emission of a neutral exciton confined in a QD usually consists of two fine-structure-split lines which are linearly polarized along orthogonal directions. In our QDs we tune the emission energies as large as ~23meV and the fine-structure-splitting by more than 90 µeV. For the first time, we demonstrate that strain is able to tune the angle between the polarization direction of these two lines up to 40° due to increased strain-induced HH-LH mixings up to ~55%. Compared to other quantum emitters, QDs can be easily integrated into optoelectronic devices, which enable, for example, the generation of non-classical light under electrical injection. A novel method to create sub-micrometer sized current-channels to efficiently feed charge carriers into single QDs is presented in this thesis. It is based on focused-laserbeam assisted thermal diffusion of manganese interstitial ions from the top GaMnAs layer into the underlying layer of resonant tunneling diode structures. The combination of the two methods investigated in this thesis may lead to new QDbased devices, where direct laser writing is employed to preselect QDs by creating localized current-channels and strain is used to fine tune their optical properties to match the demanding requirements imposed by QIP concepts.
52

Behavioral Model and Predistortion Algorithm to Mitigate Interpulse Instabilities Induced by Gallium Nitride Power Amplifiers in Multifunction Radars

Tua-Martinez, Carlos Gustavo 27 January 2017 (has links)
The incorporation of Gallium Nitride (GaN) Power Amplifiers (PAs) into future high power aperture radar systems is certain; however, the introduction of this technology into multifunction radar systems will present new challenges to radar engineers. This dissertation describes a broad investigation into amplitude and phase transients produced by GaN PAs when they are excited with multifunction radar waveforms. These transients are the result of self-heating electrothermal memory effects and are manifested as interpulse instabilities that can negatively impact the coherent processing of multiple pulses. A behavioral model based on a Foster network topology has been developed to replicate the measured amplitude and phase transients accurately. This model has been used to develop a digital predistortion technique that successfully mitigates the impact of the transients. The Moving Target Indicator (MTI) Improvement Factor and the Root Mean Square (RMS) Pulse-to-Pulse Stability are used as metrics to assess the impact of the transients on radar system performance and to test the effectiveness of a novel digital predistortion concept. / Ph. D. / The incorporation of Gallium Nitride (GaN) Power Amplifiers (PAs) into future radar systems is certain, and will present new challenges to radar engineers. This dissertation describes a broad investigation into signal transients produced by GaN PAs when they are excited with a wide variety of RF pulsed waveforms. These waveforms are representative of those used by a radar system to conduct multiple functions or missions. The transients are primarily the result of changes in the GaN PA gain due to self-heating, and are manifested as differences in consecutive pulses. These pulse-to-pulse differences negatively affect the ability of a radar system to extract information from a received echo. A behavioral model based on a Foster network topology has been developed to replicate the measured signal transients accurately. This model has been used to develop a digital predistortion technique that successfully counteracts the transients mitigating the impact of the transients. The Moving Target Indicator (MTI) Improvement Factor and the Root Mean Square (RMS) Pulse-to-Pulse Stability are used as performance metrics to quantify the effect of the transients on radar system performance and to test the effectiveness of a novel digital predistortion concept.
53

Control of electronic and optical properties of single and double quantum dots via electroelastic fields

Zallo, Eugenio 23 March 2015 (has links) (PDF)
Semiconductor quantum dots (QDs) are fascinating systems for potential applications in quantum information processing and communication, since they can emit single photons and polarisation entangled photons pairs on demand. The asymmetry and inhomogeneity of real QDs has driven the development of a universal and fine post-growth tuning technique. In parallel, new growth methods are desired to create QDs with high emission efficiency and to control combinations of closely-spaced QDs, so-called "QD molecules" (QDMs). These systems are crucial for the realisation of a scalable information processing device after a tuning of their interaction energies. In this work, GaAs/AlGaAs QDs with low surface densities, high optical quality and widely tuneable emission wavelength are demonstrated, by infilling nanoholes fabricated by droplet etching epitaxy with different GaAs amounts. A tuning over a spectral range exceeding 10 meV is obtained by inducing strain in the dot layer. These results allow a fine tuning of the QD emission to the rubidium absorption lines, increasing the yield of single photons that can be used as hybrid semiconductor-atomic-interface. By embedding InGaAs/GaAs QDs into diode-like nanomembranes integrated onto piezoelectric actuators, the first device allowing the QD emission properties to be engineered by large electroelastic fields is presented. The two external fields reshape the QD electronic properties and allow the universal recovery of the QD symmetry and the generation of entangled photons, featuring the highest degree of entanglement reported to date for QD-based photon sources. A method for controlling the lateral QDM formation over randomly distributed nanoholes, created by droplet etching epitaxy, is demonstrated by depositing a thin GaAs buffer over the nanoholes. The effect on the nanohole occupancy of the growth parameters, such as InAs amount, substrate temperature and arsenic overpressure, is investigated as well. The QD pairs show good optical quality and selective etching post-growth is used for a better characterisation of the system. For the first time, the active tuning of the hole tunnelling rates in vertically aligned InGaAs/GaAs QDM is demonstrated, by the simultaneous application of electric and strain fields, optimising the device concept developed for the single QDs. This result is relevant for the creation and control of entangled states in optically active QDs. The modification of the electronic properties of QDMs, obtained by the combination of the two external fields, may enable controlled quantum operations.
54

Homogeneidade química, interfaces e defeitos estruturais em nanofios de semicondutores III-V / Chemical homogeneity, interfaces and structural defects in III-V semiconductor nanowires

Tizei, Luiz Henrique Galvão 17 August 2018 (has links)
Orientador: Daniel Mário Ugarte / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin / Made available in DSpace on 2018-08-17T20:15:26Z (GMT). No. of bitstreams: 1 Tizei_LuizHenriqueGalvao_D.pdf: 12237887 bytes, checksum: e97ac7041ecfd4c30088cf9b43d9849a (MD5) Previous issue date: 2011 / Resumo: O desenvolvimento de novos materias tem grande interesse devido à ocorrência de novos fenômenos e propriedades, as quais podem ser usadas em futuras aplicações tecnológicas. Em particular, nas últimas décadas, esforços imensos foram realizados buscando compreender nanomateriais e os efeitos da redução de tamanho e de dimensão. Entre os diferentes avanços alcançados, podemos citar o desenvolvimento significativo de nanofios semicondutores (estruturas quasi-unidimensionais) com dezenas ou centenas de nanometros de espessura e milhares de nanometros de comprimento. O método mais utilizado para o crescimento de nanofios é o método catalítico chamado VLS (Vapor-Líquido-Sólido), no qual uma nanopartícula metálica serve como sorvedouro preferencial de átomos de um vapor e, também, como posição para a formação de um sólido (nanofio). O VLS foi proposto por Wagner e Ellis nos anos 60. Em nossos trabalhos, nos concentramos no estudo de nanofios de semicondutores III-V crescidos em um reator de Epitaxia de Feixe Químico (CBE) catalisados por nanopartículas de Au. Mais especificamente, estudamos nanofios de InP, InAs, InGaP, InAsP e heteroestruturas InP/InAs/InP. Como a qualidade de interfaces e homogeneidade química do material crescido, influenciam diretamente as propriedades ópticas e elétricas de nanofios, nossa pesquisa nos levou a avaliar os limites da aplicação de diversas técnicas de microscopia eletrônica de transmissão aplicadas: TEM (Microscopia Eletrônica de Transmissão), STEM (Microscopia Eletrônica de Transmissão em Varredura), HRTEM (Microscopia Eletrônica de Transmissão de Alta Resolução), EDS (Espectroscopia de Raios-X Dispersados em Energia) e EELS (Espectroscopia de Perda de Energia de Elétrons). Como consequência, determinamos os limites de detecção de variações químicas e de medidas de larguras de interfaces das diferentes técnicas. Em particular, devido às limitações impostas pelo dano por radiação no material, propusemos o uso de deslocamentos químicos de plasmons (EELS) para a caracterização química de nanoestruturas de semicondutores III-V. Desenvolvemos uma metodologia para a análise de seções transversais de nanofios de InAsP. Os experimentos realizados indicam a diferença entre os semicondutores produzidos por crescimento axial (catalítico) e por radial (bidimensional). Além disso, a análise química detalhada de heteroestruturas InP/InAs/InP levou a detecção de concentrações inesperados de As no segmento final de InP. Interpretamos esta observação como uma indicação de que As difunde através da nanopartícula catalisadora durante o crescimento, demonstrando uma rota de incorporação de elementos do grupo V em nanofios crescidos pelo método VLS. Finalmente, estudamos os efeitos de defeitos estruturais extendidos, como discordâncias na morfologia e distorções estruturais de nanofios. Neste sentido, observamos a torção de Eshelby em nanofios de InP contendo discordâncias em parafuso únicas. Nossos resultados mostram que as taxas de torção medida são muito maiores (até 100%) do que o previsto pela teoria elástica macroscópica. Isto mostra as mudanças significativas nas propriedades mecânicas e estruturais em nanoestruturas e ilustra o papel importante de estudos detalhados de microscopia eletrônica para a análise de deformações em nanoestruturas / Abstract: The development of new materials has great interest due to the possibility of finding new phenomena and properties, which can be used in technological applications. In particular, in the last decades, huge efforts have been made in order to understand nanomaterials and, the effects of size and dimensionality reduction. Among different advances, it is worth noting the significant development of semiconductor nanowires (quasi-one dimensional structures) with tens or hundreds of nanometers in diameter and thousands of nanometers in length. The catalytic method VLS (Vapor-Liquid-Solid) is the most used approach for nanowire preparation, in which a metal nanoparticle serves as a preferential sink for atoms from a vapor and, also, as the position for the solid nucleation; this method was proposed by Wagner and Ellis in the 60s. In our work, we have focused on the study of III-V semiconductor nanowires grown by Chemical Beam Epitaxy (CBE) catalyzed by Au nanoparticles. Specifically, we have studied different III-V nanowires (InP, InAs, InGaP and InAsP), as ell as, some heterostructured wires (InP/InAs/InP). As the quality of interfaces and the chemical homogeneity of materials directly influence the optical and electrical properties of nanowires, our research have led us to assess the limit of applicability of several characterization techniques based on transmission electron microscopy: TEM (Transmission Electron Microscopy), STEM (Scanning Transmission Electron Microscopy), HRTEM (High Resolution Transmission Electron Microscopy), EDS (Energy Dispersed X-Ray Spectroscopy) and EELS (Electron Energy Loss Spectroscopy). As a consequence, we have determined the detection limit for the measurement of chemical composition variations and interface widths. In particular, due to the limitations imposed by radiation damage on III-V nanowires, we have proposed the use of Plasmon chemical shifts (EELS) to the chemical characterization of III-V nanostructures. We have analyzed the cross sections of InAsP nanowires and we have been able to reveal a difference between the semiconductors materials produced by the axial (catalytic) and radial (bidimensional) growth. Through the detailed chemical analysis of InP/InAs/InP heterostructures we have detected an unexpected concentration of As in the last InP segment of the heterostructure. We have interpreted this result as an indication that As diffuses through the catalytic nanoparticle during growth. This demonstrates an incorporation route for group V atoms in nanowires grown by VLS. Finally, we have studied the effects of extended structural defects, like dislocations, in the morphology and structural distortions of nanowires. In this sense, we have observed the Eshelby twist in InP nanowires containing a single screw dislocation. Our results show that measured twist rates are much larger (up to 100%) than the predictions from the elasticity theory. This shows the significant change of mechanical and structural properties in nanoscale and, illustrates the important role of a careful electron microscopy studies to analyze deformations in nanostructures / Doutorado / Física da Matéria Condensada / Doutor em Ciências
55

Control of electronic and optical properties of single and double quantum dots via electroelastic fields

Zallo, Eugenio 12 March 2015 (has links)
Semiconductor quantum dots (QDs) are fascinating systems for potential applications in quantum information processing and communication, since they can emit single photons and polarisation entangled photons pairs on demand. The asymmetry and inhomogeneity of real QDs has driven the development of a universal and fine post-growth tuning technique. In parallel, new growth methods are desired to create QDs with high emission efficiency and to control combinations of closely-spaced QDs, so-called "QD molecules" (QDMs). These systems are crucial for the realisation of a scalable information processing device after a tuning of their interaction energies. In this work, GaAs/AlGaAs QDs with low surface densities, high optical quality and widely tuneable emission wavelength are demonstrated, by infilling nanoholes fabricated by droplet etching epitaxy with different GaAs amounts. A tuning over a spectral range exceeding 10 meV is obtained by inducing strain in the dot layer. These results allow a fine tuning of the QD emission to the rubidium absorption lines, increasing the yield of single photons that can be used as hybrid semiconductor-atomic-interface. By embedding InGaAs/GaAs QDs into diode-like nanomembranes integrated onto piezoelectric actuators, the first device allowing the QD emission properties to be engineered by large electroelastic fields is presented. The two external fields reshape the QD electronic properties and allow the universal recovery of the QD symmetry and the generation of entangled photons, featuring the highest degree of entanglement reported to date for QD-based photon sources. A method for controlling the lateral QDM formation over randomly distributed nanoholes, created by droplet etching epitaxy, is demonstrated by depositing a thin GaAs buffer over the nanoholes. The effect on the nanohole occupancy of the growth parameters, such as InAs amount, substrate temperature and arsenic overpressure, is investigated as well. The QD pairs show good optical quality and selective etching post-growth is used for a better characterisation of the system. For the first time, the active tuning of the hole tunnelling rates in vertically aligned InGaAs/GaAs QDM is demonstrated, by the simultaneous application of electric and strain fields, optimising the device concept developed for the single QDs. This result is relevant for the creation and control of entangled states in optically active QDs. The modification of the electronic properties of QDMs, obtained by the combination of the two external fields, may enable controlled quantum operations.

Page generated in 0.0756 seconds